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Abstract— We consider the problem of joining two long time
series based on their most correlated segments. Two time series
can be joined at any locations and for arbitrary length. Such
join locations and length provide useful knowledge about the
synchrony of the two time series and have applications in many
domains including environmental monitoring, patient monitoring
and power monitoring.

However, join on correlation is a computationally expensive
task, specially when the time series are large. The naive algorithm
requires O(n*) computation where n is the length of the time
series. We propose an algorithm, named Jocor, that uses two algo-
rithmic techniques to tackle the complexity. First, the algorithm
reuses the computation by caching sufficient statistics and second,
the algorithm prunes unnecessary correlation computation by
admissible heuristics. The algorithm runs orders of magnitude
faster than the naive algorithm and enables us to join long time
series as well as many small time series. We propose a variant of
Jocor for fast approximation and an extension to a GPU-based
parallel method to bring down the running-time to interactive
level for analytics applications. We show three independent uses
of time series join on correlation which are made possible by our
algorithm.

I. INTRODUCTION

Joining two time series in their most correlated segments of
arbitrary lag and duration provides useful information about
the synchrony of the time series. For example, Figure 1 shows
exchange rates of two currencies, INR (Indian Rupee) and
SGD (Singapore Dollar), against USD since 1996. The two
time series have a mild negative correlation value when looked
at globally. In Figure 1, the join segments are highlighted
and they have a correlation coefficient of 0.94. The joined
segments have a small lag and a duration of more than 3
years until 2007. This correlated segment suggests a strong
similarity in the baskets of currencies to which INR and SGD
were pegged to [6]. Note that, in general, the information of
the peg-basket of a currency is confidential. The two currencies
became uncorrelated after the join segment which denotes
a major change in one of the currencies’ pegging and it is
believed SGD stopped following USD and was pegged against
a basket of other currencies mostly dominated by EUR in that
time while INR kept following USD.

Consider another example to motivate time series join on
correlation. Normally, we expect respiration and systolic blood
pressure to be uncorrelated for a healthy person. However, if
we observe them becoming correlated, it is highly predictive
of cardiac tamponade, an acute type of pericardial effusion in
which fluid accumulates in the pericardium (the sac in which
the heart is enclosed). Tamponade almost always results in
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Fig. 1. Two time series of currency exchange rates are joined to reveal high
correlation in the past. The x-axis shows business days. The y-axis shows
conversion rates of INR and SGD against USD after normalization.

death, unless quickly treated by pericardiocentesis, a procedure
where fluid is aspirated from the pericardium. We can monitor
the respiration and blood pressure for such correlations, that
can exist in varying lag and duration depending on patients,
to save lives.

There are several possible ways two time series can be
joined. The most obvious way is to join on overlapping
timestamps, however timestamps are not always available and
such joining assumes zero lag. If we use the content of the
time series, we can join on highly correlated subsequences
of the two time series. Most existing works on similarity
join either consider fixed duration join or use some domain
specific similarity function. We focus on joining two long time
series or two sets of time series based on the most correlated
(i.e. highest Pearson’s correlation coefficient) segments of
arbitrary lag/locations and duration. Although we are using
the term “join,” unlike relational joins, we are not merging
or concatenating the participating time series when joining on
correlation.

Joining on correlation is very expensive computationally.
The trivial algorithm to join two time series takes O(n?) time
where n is the length of the time series. A computational time
of this magnitude is unacceptable for a time-critical application
as above and for many other time series datasets of moderate
size. For example, the join operation shown in Figure 1 took
5 hours by the naive algorithm implemented in C++ on a
third generation intel CPU. In this paper, we show a very fast
algorithm, named Jocor (JOin on CORrelation), to join two
time series on correlation that runs orders of magnitude faster
than the naive algorithm while producing identical results.

We extend Jocor in several directions. We show a faster
approximate version that can produce approximate results
within bounded accuracy. We propose using length-adjusted



correlation for time series join that can work better than
Pearson’s correlation. We implement a parallel system in a
GPU (Graphics Processing Unit) to reach interactive running
time for large real-world datasets. We show two case studies
in oceanography and power management where join segments
are meaningful and can potentially be exploited to build
applications.

The paper is organized as follows. We describe the problem
formally with necessary notation and background in Section
2. In Section 3, we describe the motivation of join on corre-
lation with respect to existing algorithms. Section 4 discusses
related work. Section 5 describes the algorithm with necessary
theoretical development. In Section 6, we show the extensions
of Jocor. Experimental results are shown in Section 7 and the
case studies are shown in Section 8.

II. PROBLEM DEFINITION

In this section, we define the problem and other notations
used in the paper.

Definition 1: A Time Series t is a sequence of real numbers
t1, to, ..., t, where n is the length of the time series. A time
series subsequence t[i : i+m—1] = t;,tiy1,. ..
continuous subsequence of t starting at position ¢ and length
m.

We would like to join two time series x and y of length
n and m respectively. We assume n > m without losing
generality. We define the time series join problem as below.

Problem 1 (MaxCorrelation Join): Find the most corre-
lated subsequences of x and y with length len > minLength.

We extend the definition to find c-approximate join.

Problem 2 (a-Approximate Join): Find the subsequences
of x and y with length len > minLength such that the
correlation between the subsequences is within « of the most
correlated segments.

In the above problems, we refer to maximizing the Pear-
son’s correlation coefficient when finding the most correlated
subsequences. Pearson’s correlation coefficient is defined in
equation 1.
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The person’s correlation is a good similarity measure be-
cause it can be computed by just a linear scan and it is
scale and offset invariant. However, correlation coefficient is
not a metric and it’s range is [-1,1]. If we just focus on
maximizing positive correlations and ignore the negatively
correlated subsequences, we can use z-normalized Euclidean
distance and exploit the triangular inequality for efficiency.
Z-normalized Euclidean distance is defined as below.

If we are given two time series X and y of the same length
m, we can use the euclidean norm of their difference (i.e. X-y)
as the distance function. To achieve scale and offset invariance,
we normalize the individual time series using z-normalization
before the actual distance is computed. The z-normalized
Euclidean distance is then computed by the formula

dist(x,y) = — 7;)? (2

where &; = ;—I(L — pg) and g; = é(y7 — ). The
relationship between positive correlation and z-normalized
Euclidean distance is the following [18].

3)

According to equation 3, maximizing correlation can be
replaced by minimizing the z-normalized Euclidean distance.
However, computing correlation coefficient or z-normalized
Euclidean distance in the above formulation requires two
passes (first, to compute p and o and second, to compute
the distance). In contrast, we can compute the normalized
Euclidean distance between x and y using five numbers derived
from x and y. These numbers are denoted as sufficient statistics
in [22]. The numbers are >_z, >y, > 2% .Y y* and Y xy.
The correlation coefficient can be computed as below.

Clo,y) = 2220 = Mttty @
Mooy
dist(z,y) = v/2m(1 — C(z,y)) (5)

Computing the distance in this manner not only takes one
pass but also enables us to reuse computations and reduce
the amortized time complexity from linear to constant. Note
that, the sample mean and standard deviation can be computed
from these statistics as i, = = > z and 02 = L > 22 — 12,
respectively. In this paper, we use the above formulation to
compute correlation and/or z-normalized Euclidean distance.

As used in [25][13], we normalize Euclidean distance
based on length and we name it Length-adjusted z-normalized
Euclidean distance (LA_dist).

dist(z,y)

LA dist(z,y) =
m

(6)

LA_dist is not a metric but has one desirable property
for join applications. It removes the bias of the correlation
measure for shorter sequences. We defer the details of the
discussion on bias until Section 6.

III. MOTIVATION

In this section, we provide an analysis on different join
possibilities for time series and motivate the necessity of
joining time series based on highly correlated subsequences.

In Figure 2 we show two time series x and y of equal length.
They are the same currency exchange rates from Figure 1.
When considering to join x and y, we have several options.
First, we can measure the correlation or any other similarity
measure between x and y globally and join them if the global
correlation is above a certain threshold 7. Second, we can
measure the cross-correlations between x and y for all lags
and decide if any lagged correlation is larger that 7. Third, we



can measure the correlation between any pairs of subsequences
of any length and decide if any of the pairs is larger than 7.
And finally, we can find the most correlated join segments
having a minimum length.

In Figure 2, we show the matched segments for each of the
four cases and the corresponding correlation values found in
each case. Clearly, global correlation or cross-correlation do
not produce good join segments. We achieve a very good join
with 7 = 0.95 as shown in Figure 2(C ). However, the join
segment could be much larger if we set a required minimum
length as shown in Figure 2(D). Note that, the correlation is
smaller in this case than the best.

Computing global correlation requires one linear scan
and thus, it is O(n). Computing cross-correlation requires
O(nlogn) time using FFT algorithm. Computing correlation
for arbitrary subsequences by a naive method requires O(n*)
time which can reduce to O(n?) if we reuse computation by
caching in the memory. For large data, such a large time
complexity is unacceptable. To give an example, for n =
40, 000, the naive algorithm takes 11 days to finish.

IV. RELATED WORK

Existing work on time series join or data stream join can
be classified into several categories.

The first category joins on timestamps which is completely
different from the problem we consider in this paper as there
is no similarity comparison [9][23]. The second category
of methods join time series based on Euclidean distance or
Dynamic Time Warping (DTW) without any normalization
to remove the scale and offset [8][24]. Thus, joining based
on correlation cannot just work with these algorithms as
correlation computation needs normalization for every sub-
sequence. The third category of join methods are scale and
offset invariant but unfortunately are not exact [11][12][10]
and have no bound on the error. These methods propose
unique ways of segmenting the time series for efficiency and
find joining segments based on a similarity function over a
feature-set. These methods usually have quite a few parameters
to tune by the domain experts. In contrast, Jocor finds join
segments with maximum correlation coefficient and requires
only one domain-independent parameter, the minimum length
of the segment which can be zero trivially. We also provide
a fast approximation method which has tight error bound for
confidence.

We have the assumption that the joining series are uniformly
sampled series i.e. the samples are taken at equal intervals and
the intervals are the same for both the time series. Typical
datasets adhere to this assumption and therefore, methods
assuming equal sampling intervals are very common in the
literature.

Other than joining two time series, there is a rich literature
of computing pairwise correlation values for a large number
of evolving time series over fixed length sliding window [26],
possibly with limited lags [22]. We fundamentally differ from
them as we consider only archived time series for arbitrary
lag and duration.

Algorithm 1 Join(x,y)

Ensure: Return the locations and length of the most corre-
lated segments of x and y

I: X + (x-mean(x))/stdv(x)

2: 'y < (y-mean(y))/stdv(y)

3: n < length(x), m < length(y)

4: best < 0

5. for i + 1 to m — minLength + 1 do

6: for j < 1ton—minLength+ 1 do

7: mazLength < min(m —i+ 1,n—j+1)
8: for len < minLength to maxLength do
9: ¢ <—Correlation(x[j:j+len-1],y[i:i+len-1])
10: if ¢ > best then

best + ¢

—_
—_

A recent parallel work [10] on finding longest correlated
subsequence between a query and a long time series has been
published. In [10], authors propose an index structure and an
a-skip method to find the longest match of a given query with
correlation more than a threshold. There are some fundamental
differences between [10] and our proposed work. Our work
builds upon a bound on correlation measure across length
described in [15] while [10] uses early abandoning technique
based on the input threshold. Therefore, the speedup in [10]
depends on the input threshold while our algorithm does not
vary on the minimum length input. For a trivial input of zero,
the method in [10] degenerates to brute-force search, while
ours still finds the most correlated segment very quickly. In
addition, we consider joining two large time series while [10]
assumes the query be negligible in size.

V. JOIN ON CORRELATION

We describe our algorithm in this section in two phases. We
first show how to reuse the sufficient statistics for overlapping
correlation computation and then show how to prune segment-
pairs admissibly. We also provide pseudocode for clarity. We
name our method Jocor (JOin on CORrelation) as mentioned
before.

The simplest algorithm to join two time series based on
correlation is O(n*). Algorithm 1 shows such a method to find
the most correlated join segments. The algorithm computes
correlation of all the possible pairs of segments of all the
lengths. Note that the correlation function in line 9 takes
at least a linear scan over both the segments to compute
the correlation. Algorithm 1 runs massive computation. For
example, we have run a c++ implementation of this simple
algorithm for the two time series in Figure 1 having four
thousand observations each and it takes 5 hours to finish. We
will use the Algorithm 1 as a skeleton and add statements
around it to build Jocor.

A. Overlapping Correlation Computation

To reduce the massive computation required for algorithm 1,
we need to use the overlap between segments while computing
correlation. In this section, we show a method to cache
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sufficient information to compute the correlation values at line
9 in constant time with O(n?) space.

Let’s start with computing the shifted cross product between
two time series. It can be done in O(nlogn) time using the
FFT algorithm as presented in lines 4 to 6 in the Algorithm
2. We are showing the steps in the Algorithm 2 without
describing it elaborately. The steps produce an array that
contains the sum of the products of the elements in x and
y for different shifts of x. The output z of the Algorithm 2 is
expressed more precisely as below. Here negative indices are
assumed to return zeros.

m/
Rk = E YiTk—m'+1
=1

Here m’ is the length of y and n’ > m’ is the length of x.
Note that, z,, is x.y and z;’s for n’ +m’ > k > m’ are sums
of products of y with k-shifted x. Also note that the length of
z is twice the length of x.

We use the Algorithm 2 to fill in a two dimensional array
that caches sufficient statistics to compute any correlation
coefficient of any length at any locations of the two time
series. Since the Algorithm 2 keeps one series fixed and shifts
the other, we can shift the fixed series in an external loop to
call the Algorithm 2 repeatedly to produce a set of z vectors.
More precisely, we want to populate a set of cross products Z
where Z; = multiply(x, y[i : m]). The cross products in Z are
the most important statistics for any correlation computation
between any segments. The dot product of two subsequences
of x and y starting at j and ¢-th locations, respectively, with
length len can be computed as follows.

(7

Zilm — i+ j| = Zitien[m — i + j]
= Z?;z Yi+iTm—i+j—(m—i)+1
) - 2?2127 o ‘yl+i+lenxm7i+jf(mfiflen)Jrl

= Z?;z Yi4+iTj+1 — Zﬁ?eln Yi+iZj+1

_ len

=121 Yi4iTi4

The complexity to compute the cache Z is O(n?logn)
which may seem to be high. However, having such a quadratic-
space cache reduces the join algorithm from O(n?) to O(n?).

Where in the Algorithm 1 do we use the above caching
mechanism? The Algorithm 3 describes the complete Jocor
method transformed from the Algorithm 1. Lines 4-5 compute
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The join segments and correlation coefficients for the same pair of currencies using different methods.

Algorithm 2 multiply(x,y)

Ensure: Return the shifted dot products for x and y
1: n' < length(x), m’ < length(y)

: X+ append(x, n’-zeros)

.y« append(reverse(y), (2n’ — m')-zeros)

. X+ FFT(x)

Y« FFT(y)

7-X.Y

2iFFT(Z)

the cache and line 12 uses the cache to retrieve the sum-of-
products of the subsequences of x and y. Note the correlation
computation in line 13 is a constant time operation assuming
the mean and standard deviations are already known. We
use cumulative sums to generate the means and standard
deviations as described in [19] and in the definition section.
The remaining parts of the Jocor algorithm will be explained
in the next section.

B. Pruning Uncorrelated Locations

We describe our second technique to further optimize the
Algorithm 1. We aim to build a mechanism to skip some of
the lengths in the loop at line 8. We use a novel distance
bound across lengths [15] to compute the step size dynamically
instead of incrementing the len variable by one.

If we know the distance between two subsequences of length
len as d = dist(x[j : j+len—1],y[i : i+ len—1]), the lower
bound for the dyerr = dist(x[j : j + len],y[i : i + len]) can
be expressed as below. Here, z needs to be larger than any
normalized value in the dataset and can be pre-computed.

+ (14&72@)2 2%)~d?

= ((1-l-el2n)
= fd?
We want to use the above bound to find a safe stepSize
that jumps over all the unnecessary lengths which would not
have more correlation than the best correlation discovered so
far. Note that, in the bound equation, the d2L g 1s a fraction 0 <
f < 1 of d? and the larger the len the more close the fraction
is to one. A pessimistic choice would be to assume that we
repeatedly apply the fraction for len instead of the fractions
for len + 1,len + 2,...,len + S where S is a stepSize. For
example, 0.6* < 0.6x0.7x0.8x0.9. Therefore, d2 ;5 = f9d?

2
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Algorithm 3 Jocor(x,y)

Ensure: Return the locations and length of the most corre-
lated segments of x and y

1: X « (x-mean(x))/stdv(x)

2: 'y < (y-mean(y))/stdv(y)

3: n < length(x), m < length(y)

4: fori=1tom do

5. Z; + multiply(x,y[i : m])

6: best < 0

7. for i + 1 to m — minLength + 1 do

8: for j < 1ton—minLength+1 do

9: mazLength < min(m —¢t+ 1,n—j5+1)
10: len < minLength

11: while len < maxLength do

12: sumXY  Zi;lm — i + j] — Zitien|m — i + J]
13: c %

14: if ¢ > best then

15: best < ¢

16: f « ( ljlen) + (liign)z ’22) !

17: stepSize + |log 152t = (log f — ;L)
18: if stepSize <0 or stepSzze > len then
19: stepSize + 0
20: len < len + stepSize + 1

and S is a safe stepSize if d7 55 > d3,,,. Using the equality,
we solve for S exploiting the Taylor series and ignoring the
higher order terms.

best fS
= (len?;i)((ll gbcst) fS
= log(1 +len)+log—“( Cest) = Slog f
= 2 +log UgZsst) = Slog f
= S >log UgZsst) + (log f — 74)

In the Algorithm 3, we use the above equation to determine
the stepSize for the innermost loop at line 17. The fraction
f is computed at line 16. Note that we take floor of S and
check the range of stepSize at line 18 so we don’t violate the
condition for taylor expansion which is % <1

Computing the maximum normalized value: As described
in the previous section, z is the empirical maximum normal-
ized value in the dataset over all possible means and variances
at all lengths. There exists an algorithm to exactly compute
the maximum value for z in O(n?) time (shown in [15]) for
every length. To join time series on correlated subsequences,
the O(n?) is acceptable as the entire algorithm has higher
complexity. However we can set a pessimistic z value in
linear time by normalizing the time series globally and taking
the twice of the absolute value of any individual observation.
Mathematically, by setting z = 2 * mazx(abs(x), abs(y)).
Unfortunately, there can be datasets where noisy spikes can
massively impact the empirical value of z and thus reducing
the benefit of the bounds. The value of z can be thought of as
the largest possible value of an observation in the dataset if the

data is z-normalized prior to any processing. A z-normalized
time series has mean and variance equal to 0 and 1 and the
maximum value can be infinitely large. We can make proba-
bilistic assumption about z when the time series are large and
roughly normally distributed. If we assume that an unknown
observation z will follow a standard normal distri2bution, we
can argue that, P(z > C) = 1 — \/%f_coo e~z dz. Thus,
a value of 5 (i.e. 50 away from the mean) has a very small
probability (107°) to appear in an unknown observation of a
normalized time series. In this way, we can set a hard-coded
value of 5 for z for noisy datasets and have high confidence
that the bound is almost always correct.

VI. EXTENSIONS

Jocor is an exact method finding the most correlated seg-
ments. In this section, we present two extensions of the Jocor
algorithm.

A. Join on Length Adjusted Distance

Our first extension is to join on length-adjusted z-
normalized Euclidean distance (L A_dist) instead of the Pear-
son’s correlation coefficient. Although, in [16] and [25] authors
have used such distance measure, we motivate the necessity
of LA _dist for time series join.

We first experiment to see the distribution of the maximum
correlation for different lengths. Figure 3 shows how the
maximum correlation between all segment-pairs of a certain
length decreases as we increase the length. In other words,
the shorter subsequences tend to be more correlated than their
extended subsequences. This creates a strong bias in Jocor so
it produces the best matching segments of a length close to
the minLength. The minLength is 100 for Figure 3.
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Fig. 3. For the pair of currencies shown in Figure 2, The best Pearson’s
correlation coefficients and the best length-adjusted Euclidean distances are
shown for various lengths. Pearson’s correlations decrease with increasing
lengths. While the length-adjusted Euclidean distance can report a longer join
segment with less Pearson’s correlation coefficient than the best one.
Being adjusted by the length, LA_dist prefers a long
sequence of a slightly less correlation over a short sequence
of the highest correlation. As seen in this example, LA _dist
finds the best match at length more than 400 although the
correlation for the match is not the best. It can be clearly seen
in the Figure 3 that the best match found by LA _dist is at a
length where the correlation has started to decrease drastically.
How do we change our Jocor algorithm to accommodate the
optimization for LA_dist? We need to compute the LA _dist
instead of the correlation, ¢, at line 13 using the equations 5



and 6. We also need to change the “if” condition to maximize
LA_dist at line 14. However, these are simple changes by
definition. The step size at line 17 is derived for correlation
and we need to find the proper step size for LA _dist.

We start with restating the definition of LA_dist.

dist(z,y) 2

m = \/Zz 1 Ux - yi;y”?/)

The lower bound for the LA_dist can be computed from
the lower bound of the z-normalized Euclidean distance found
in the previous section.

LA dist(z,y) =

2 _ 2 len len —1,52
dip = fd° = (e T Grien ? )~d
= d2LB — len 42
(1+len) (1+len+22) len?
= LA,dZSt%B = WLA d28t2
= f'LA_dist?

As step size for correlation is computed from the lower
bound, we can compute the step size for the LA _dist as below.
In the derivation, we take the largest value for the log(1l —

o—g) at the limit S — 0.
LLAAdbest f/S
= i =
= log(l — rrgy) +log 7(1(10153’) = Slog f'
= logw Slog f/ + (len+S) + 2(len—i-S)2 +.
= S>log 7(1( Cbe;t) = (log f' + =)

Thus, changing the lines 13-17 in the Jocor algorithm is
sufficient to achieve a Jocor for LA_dist.

B. Approximate Join

Our algorithm in the previous section is an exact algorithm
that runs faster than the trivial counter part. For short signals,
the exact method is the best choice and reasonably fast.
However, for long time series which are of the order of 105,
we need a really fast approximation technique trading off some
accuracy within a bound. In this section we describe how to
convert the Jocor algorithm to an approximation algorithm
within a bound.

The technique is very simple. We skip every k positions of
the inner time series in line 8 of the Jocor algorithm. The effect
of such skipping is that we may miss the exact solution and
find a very close approximate solution. We provide a bound
on the worst-case-loss in correlation if we adopt the skipping
technique for the inner time series. Note that, skipping every
8 positions in this way is not the same as 8-way down-
damping before joining the time series because the correlation
coefficients are still computed in the original resolution.

Before we derive the error bound, let us first discuss the
trivial bound for correlation across length. Recall, the bound-
ing factor f for a length is ( 1+len) + (H‘fen)Qz )~! which
is a monotonically increasing function over length. If the user
supplied minimum length is min Len then the trivial factor for
any length is frinren = ((11%:5227:) + (1-&2?7&?@2 2%)7h

Now, if we don’t skip anything, i.e. £ = 1, then we compare
(n—len+1)(m —len+ 1) pairs of locations for one specific

length len. If we skip every k positions of the inner time
series, the number of pairs of locations is reduced to (n —
minLen+1) (mfm”lziﬂ) Assume the best location pair, o,
is one of the pairs that the algorithm misses that has a distance
d. There exists a pair p that the algorithm compared and we
can extend that pair at most k-steps to obtain the optimal
pair. By definition, our approximate algorithm outputs either
p or another pair that has less distance than the pair p. If we
assume, pessimistically, p has the minimum possible distance
(i.e. di,) then the distance of o should be larger than the lower
bound for k-step extension of p. Therefore, d? > d2 f*
Note the use of the trivial lower bound here.

To demonstrate the above theorem in action, we do an
experiment varying the skipSize k£ and running the Jocor
algorithm to find the best computed pair. Note that, £k =
1 gives the optimal distance. We plot the discovered best
correlation in red and the worst case drop in the correlation
that could be possible for a skipSize & in green. The discovered
best correlation is mostly the same as the optimal one and it
never drops below the green curve showing the theorem is
correct for these six datasets.

In the bottom four datasets the worst possible correlation is
even more than 0.9. Therefore, we can easily set skipSize & to
32 and get 32x speed-up. However for the powerConsumption
dataset we observe a massive error range that carries no
information. The reason is the dataset has large spikes that
cause a large z value and as a result, a very small bounding
factor.
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Fig. 4. Approximation bounds for different datasets.

To summarize, if one discovers a 0.2 correlated pair using
skipSize 32, it is highly likely there exists no good pair. If
one discovers 0.9 correlated pair, the pair is as good as the
best one. An additional note, the speedup does not depend on
which time series we place in the inner loop. But the space
usage can be reduced by placing the longer time series in the
inner loop.

VII. EXPERIMENTS

We have all of our code, data, slides, pdfs and additional
experiments available on anonymous repository [1] and the
access password is JOCOR2014. Our method is completely
reproducible and easy to use for visualization. We provide
a matlab script that can be used to produce all the join
visualizations shown in this paper.



106 104 9

_

G 10 z o e g 8 —+— EEG

: : RW £, —o—RW

3 10t 3 10 Power = Power

23 ) —5— LightCurve = 6 ‘

3 ~ 2 —H8— LightCurve

o 10 Py RatBP Z 5

g —— EEG g 1 3 RatBP

=102 —6—RW = 2 4 —

g Power g A

2 | =i o« 3

= 10 —8&— LightCurve| s 10 = o "

o , 5% o 2

2 100 RatBP q>'<) g e

) ——BF &5 S 8

1o 100 0
005 T 1s 225 335 4 0 10 20 30 40 50 6 70 0 05 1 15 2 25 3 35 4
Time Series Length x10 skipSize (k) Time Series Length ~ x1or

Fig. 5. Experimental demonstration of speedup of the three different algorithms. (left) .A; over Brute Force method. (middle) Az for various skipSize.

k =1 denotes the runtime for A;. (right) A3 over Aj;.

We use six datasets for our experimentation. The datasets
are mainly of two different forms. First, two long time series
from two different sources. Second, many short time series
from the same source. To use the second form of data, we
divide the short series into two equal partitions and concatenate
the short series in each partition to create two long time series.
Performing join on these two time series is equivalent to per-
forming join between the two partitions of time series except
the overlapping segments created because of the concatenation.
Each of the dataset has potential to grow to millions of time
series and thus, a scalable algorithm for join computation is a
necessity for them.

e Power: 520K points long whole house power consump-
tion sequence that captures important patterns on the
individual appliances operating at an instance of time
[14]. We join the whole house power consumption to that
of the refrigerator.

o LightCurve : 8000 star light-curves are collected from
[20]. Each light-curve has 1000 observations.

o EEG: EEG traces having roughly 180K observations from
two electrodes of the same patient in the same recording
[17].

o Currency: Daily conversion rates of different currencies
from USD since 1996 [3]. We have 190 currency con-
version rate and we have up to 4000 observations per
currency.

o BloodPressure: The blood pressure of Dahl salt-sensitive
(SS) rat collected to study baroreflex dysfunction [7].
We have 100 blood-pressure sequences each having 2000
observations.

o Random Walk (RW): Synthetically generated random
walks.

We have experimented with four different versions of our
algorithm described in Algorithm 3. The algorithms are all
implemented in C++ and the source code is available in the
webpage. For the Algorithm 2, we use fftw3 library.

o Exact Join (A;): This is the Algorithm 3 which is
guaranteed to find the most correlated subsequence.

« Approximate Join (As): This is the algorithm which skips
every k positions of the inner time series in Algorithm 3.

o Length-adjusted Join (A3): This algorithm optimizes the
length-adjusted correlation instead of the Pearson’s cor-
relation in the Algorithm 3.

e GPU-based Join (A4): The Algorithm 3 has been re-

designed to exploit the available GPU.

A. Scalability

Jocor is the first algorithm to suggest time series join on
correlation. There are other techniques for online correlation
mining, for example, BRAID [22] and StatStream [26]. Both
of the methods consider the correlation of the most recent
windows of the streams. Jocor is not an online algorithm and
it joins offline data for all possible windows.

Most of the proposed methods that can be converted to
time series join methods are not exact, i.e. the algorithms can
miss the best join segment. As discussed in the Applications
section, the exactness is a very desirable property for time
series join. Jocor is an exact algorithm to join time series
and therefore, is computationally more expensive than other
approximate correlation mining algorithms. To compare the
speed of Jocor, we use the naive algorithm with a quadratic
cache to store sufficient statistics. Thus, the naive algorithm
has O(n?) time complexity.

For simplicity, we always use equal sized time series (i.e.
n = m) to join although our method is not limited to that. We
vary n and measure the running time of Jocor and the naive
brute force algorithm with equal memory footprint to show
the speedup and goodness of the algorithm. Note that, Jocor
has no parameter other than the minimum join length which
can trivially be set to zero without sacrificing speed-up. In
our experiments, we set minLength = 100 unless otherwise
specified.

Figure 5(left) shows the speed-up Jocor (A;) can achieve
for different datasets over naive Brute Force. Note that, naive
algorithm takes same time for all of the datasets. Jocor gets the
smallest speed-up of roughly 2x for the Power dataset. The
reason is the same as explained before in the Approximation
section; the Power dataset has large spikes that corrupts the
value of z which in turn reduces the pruning power of our
method.

We then test the speed-up Jocor can achieve by simple
approximation algorithm (A45). We vary the skipSize (k) and
measure the running time. Note that £ = 1 is the same as
the Jocor algorithm. As shown in Figure 5 (middle), there is
a linear speed-up as we increase k. Note the log scale in the
y-axis. For this experiment, we fix n = 8000.

We test the speed-up of the Jocor algorithm when it opti-
mizes for the length-adjusted Euclidean distance. We vary the
time series length and measure the speed-up over the algorithm



A1 shown in Figure 5(right). There is no clear trend in the ratio
of the running times of A3 over .A; as we increase lengths.
As a general statement, we see that join on the length-adjusted
Euclidean distance takes more time than that on the Pearson’s
correlation and the exact ratio changes with the increase of
length, as well as, with datasets.

A reasonable question would be to understand the distribu-
tion of the time spent in parts of the algorithm. We report the
breakdown of the running time for the two major parts of the
Algorithm 3. The first six lines in Jocor compute the sufficient
statistics while the remaining lines search the best correlated
segment. In Figure 6(left), we show the time for the two
disjoint parts. The statistics-computation takes insignificant
amount of time compared to the exact search. However the
gap between the two parts of the code is reduced if we use the
approximation technique with a skipSize, £ = 32 and becomes
significant.

B. Pruning Power

The scalability experiments have demonstrated the speed-
up. However one may raise concern that the speed-up might
have resulted from implementation differences. In this section
we show the pruning power of our novel bounds. We define
the pruning power as the average percentage of lengths that
Jocor can skip in the third loop (line 11) in Algorithm 3. We
measure the pruning power for different lengths of the joining
time series of the datasets and show in Figure 6(middle).

Most of the datasets achieve 0.98 or more pruning rate
which means, on average, Jocor prunes 98% of the lengths for
any location-pair (7, j). The rate increases as the joining se-
quences become larger. The Power dataset shows significantly
low pruning rate because of reasons explained earlier.

The pruning power of the method depends on the value
of z. Large values of z give less pruning performance. We
experimentally validate the statement in Figure 6(right). For
small z values, the datasets achieve close to 100% pruning rate
and, with the increase of z pruning rate decreases depending
on the datasets. As usual, Power performs worse. Note that
the larger values of z are less probable and we can achieve
massive speed-up if we manually set a small z sacrificing the
exactness guarantee.

C. Scalability on GPU

We also run a GPU-based implementation of our method
on a commodity GPU. It is a GeForce GT 630M with 96
cores and 800 MHz graphics clock. There is a 1GB memory
on the card. We use the maximum number of threads (i.e.
32x16=512) allowed and we use 256 (16x16) blocks, more
than the number of cores in the GPU. We need to chunk the
time series in segments so the memory of each core in GPU is
just sufficient to perform join operation on a pair of chunks and
the number of processes launched in the GPU is minimized.
This chunking is done in the CPU after the sufficient statistics
are computed at line 6 of Jocor. The algorithm sends every
pair of chunks to the GPU’s global memory, one by one, to
compute the best join segment.

The exact version of Jocor gains nothing when ported on
GPU because of the thread synchronization i.e. each thread
runs different number of the main loop and all threads should
wait for the slowest one to finish. In Figure 7(left) we show
the speed-up of the exact version where the ratio remains
very close to one or sometimes less than one. One interesting
observation is the speed-up for the Power data. Recall, Jocor
performs worse on the Power data because of lack of variance
in the number of iterations of the “while” loop. This makes
the Power data a perfect fit for speed-up by parallelization as
all the threads are running roughly the same amount of times
with a balanced load.

Next, we test the speed-up for z = 3 and show the results
in Figure 7(middle). We have around 2x to 6x speed-up from
the single CPU version. We do not consider it a success as
we have 96 cores in the GPU. Finally, we test the speed-up
for z = 3 and k = 32 and show the results in Figure 7(right).
Here we achieve up-to 47x speed-up which close to 50% of
the number of cores.

Although the above speedup is promising, the question
remains if this is sufficient for interactive applications. Of
course, the answer depends on the data size. The absolute
running times of the GPU implementation with z = 3 and
k = 32 for a join of size 10,000x10,0000 are all smaller than
10 seconds. It is a good enough size for joining tables of time
series such as our LightCurve and RatBP datasets and many
other datasets in the UCR time series archive [4].

VIII. APPLICATIONS

In this section, we show three scenarios of data mining that
can use time series join on correlation.
A. Join Based Similarity Search

Time series join on correlated subsequence can be applied
in higher level analytics. Imagine that we have a large time
series of power consumption of a household refrigerator [14]
shown in Figure 8(top). The data has more than 500 thousands
observations in each of the time series. As an analyst, one can
browse the time series with a small viewing window and arrive
at the Figure 8(middle).

The power consumption of a refrigerator has a specific
cyclic pattern with on-off segments. The ON-OFF segments
can be of different length and the Figure 8(middle) has several
long ON segments sequentially. The analyst can select a region
(shown in red) in the viewing window which includes the
uncommon segment and queries for similar patterns in the
entire time series. This action of flexibly selecting (maybe
using a mouse) the query is a powerful tool for analysis tasks
and creates a havoc for traditional similarity search methods.
Traditional methods compare the entire query using various
similarity measures such as correlation, Euclidean distance,
Dynamic Time Warping (DTW) etc. and finds the best match.
However traditional methods can not ignore flexible ends
which is a requirement from analysts who are unsure about
the exact query length.

The Figure 8(bottom) shows the best join segment for the
selected query where the two long cycles and the high cycle
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matched almost perfectly with a correlation value of 0.97.
More importantly, the algorithm did not find any other match
with correlation more than 0.95 which suggests the pattern
is a rare one. We use traditional similarity search with 0.9
correlation threshold, we miss this great match and find some
spurious matches.
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Fig. 8. (top) A series of power consumption of a household refrigerator.
(middle) An interesting subsequence selected as a query by an analyst.
(bottom) The best join segments are shown. The query is shown in red and
the match is shown in blue.

B. Join Based Clustering

Join segments can represent the similarity between two time
series which has already been used in [25][13]. We have
done a small experiment to demonstrate the potential of such
use. We have taken six audio samples where subjects say the
name “Stella.” We have collected the data from the GMU
speech accent archive [5] and our samples cover native english
speakers, arabic accent and mandarin accent. We have taken
envelops of the signals (shown in red in the Figure 9) and
used both DTW and Jocor to measure the similarity among
the signals and plotted dendrograms based on Ward’s linkage

method. As show in the Figure 9, join based similarity can
cluster better than DTW. The reason for join segments working
better than the DTW alignment is that there are irrelevant
phonemes segmented out from the adjacent words into our
samples. Thus DTW suffers from aligning irrelevant phonemes
to relevant ones while Jocor excludes those phonemes for the
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Dendrograms based on DTW and correlation coefficient of the join

C. Join Based Filtering

Time series join on correlation can provide interesting
perspective on multivariate data. We perform a case study to
demonstrate it. We have taken a dataset [2] of salinity and
temperature of a circular region around station ALOHA (22°
45’ N 158° W) in the pacific ocean shown in Figure 10. Ocean
salinity has a yearly periodicity for the surface current and a
daily periodicity for the tides. Ocean temperature is roughly
constant except occasional drops (see Figure 10). Each time
series has 1.8 million observations and note that they represent
only one location of the earth. Performing a join on such long
pair of time series is impossible by the naive algorithm which
has been made possible by Jocor.
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Typically, the relationship between salinity and temperature
depends on the density of the water and there can be many
other factors that are important in their relationship [21]. We
ask the question if there was any day in the past when the
two variates were highly correlated denoting the fact that other
variables were roughly constant.

We have found three days in Figure 11 when the temperature
and salinity of the area are highly correlated. Such correlated
segments are evidences of “everything being right” in the
system. In these three days, first, the ship that recorded the
data operated in a very small area and had consistent noise-
free measurements. Second, the water density was close to
constant to observe the correlation. Third, the periodic change
in temperature in Figure 11(middle) suggests a front of an
eddy was passing the area. Thus time series join can point to
the clean and noise-free part of the data that can be used to
reason about many properties of the underlying system.

IX. CONCLUSION

Time series join on subsequence correlation is a promising
analysis tool that can potentially be used in many domains
including environmental monitoring, power management and
acoustic monitoring. In this paper we have described an
efficient algorithm to perform join on subsequence correlation.
The algorithm is orders of magnitude faster than the brute
force solution while producing the same results.
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