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Important! Read This!
These slides are from an early talk about SAX, some slides 

will make little sense out of context, but are provided here to 

give a quick intro to the utility of SAX. Read [1] for more 

details.

You may use these slides for any teaching purpose, so long as they are 

clearly identified as being created by Jessica Lin and Eamonn Keogh.

You may not use the text and images in a paper or tutorial without 

express prior permission from Dr. Keogh.

[1] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003). A Symbolic Representation of Time 
Series, with Implications for Streaming Algorithms. In proceedings of the 8th ACM 
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. San 
Diego, CA. June 13.



Outline of Talk

• Prologue: Background on Time Series Data Mining

• The importance of the right representation

• A new symbolic representation 

• motif discovery

• anomaly detection

• visualization

• Appendix: classification, clustering, indexing



What are Time Series?
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A time series is a collection of observations 

made sequentially in time. 



Time Series are Ubiquitous! I

People measure things...

• Schwarzeneggers popularity rating.

• Their blood pressure.

• The annual rainfall in New Zealand.

• The value of their Yahoo stock.

• The number of web hits per second.

… and things change over time.

Thus time series occur in virtually every medical, scientific and 

businesses domain.



Image data, may best be thought of as time series…
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What do we want to do with the time series data?
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All these problems require similarity matching

Clustering Classification
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Euclidean Distance Metric
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Given two time series

Q = q1…qn

and 

C = c1…cn

their Euclidean distance is 

defined as:



• Create an approximation of the data, which will fit in main 

memory, yet retains the essential features of interest

• Approximately solve the problem at hand in main memory

• Make (hopefully very few) accesses to the original data on disk 

to confirm the solution obtained in Step 2, or to modify the 

solution so it agrees with the solution we would have obtained on 

the original data

The Generic Data Mining Algorithm

But which approximation
should we use?
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• Create an approximation of the data, which will fit in main 

memory, yet retains the essential features of interest

• Approximately solve the problem at hand in main memory

• Make (hopefully very few) accesses to the original data on disk 

to confirm the solution obtained in Step 2, or to modify the 

solution so it agrees with the solution we would have obtained on 

the original data

The Generic Data Mining Algorithm (revisited) 

This only works if the 
approximation allows 

lower bounding
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Lower bounding means that for all Q and S, we have…

DLB(Q’,S’) ≤≤≤≤ D(Q,S)

What is lower bounding?



We can live without “trees”, “random mappings” and “natural 

language”, but it would be nice if we could lower bound strings 

(symbolic or discrete approximations)…

A lower bounding symbolic approach would allow data miners to…

• Use suffix trees, hashing, markov models etc

• Use text processing and bioinformatic algorithms 
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We have created the first 

symbolic representation of time 

series, that allows…

• Lower bounding of Euclidean distance

• Dimensionality Reduction

• Numerosity Reduction 



We call our representation SAX

Symbolic Aggregate ApproXimation

baabccbc



How do we obtain SAX?
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Time series subsequences tend to have a 

highly Gaussian distribution
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A normal probability plot of the (cumulative) distribution of 

values from subsequences of length 128.
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Visual Comparison

A raw time series of length 128 is transformed into the 

word “ffffffeeeddcbaabceedcbaaaaacddee.”
– We can use more symbols to represent the time series since each symbol 

requires fewer bits than real-numbers (float, double)
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PAA distance 

lower-bounds 

the Euclidean 

Distance
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SAX is just as good as 

other representations, or 

working on the raw data 

for most problems (Slides 

shown at the end of this 

presentation)

Now let us consider SAX 

for two hot problems, 

novelty detection and 

motif discovery 

We will start with novelty 

detection…



Novelty Detection

• Fault detection 

• Interestingness detection

• Anomaly detection

• Surprisingness detection



…note that this problem should not be 
confused with the relatively simple problem 
of outlier detection. Remember Hawkins 
famous definition of an outlier...

finding surprising 

Thanks Doug, the check is in the 
mail.

We are not interested in finding 
individually surprising 
datapoints, we are interested in 
finding surprising patterns.

from a different mechanism...

... an outlier is an observation 
that deviates so much from 
other observations as to arouse 
suspicion that it was generated 
from a different mechanism...

Douglas M. Hawkins



Lots of good folks have worked on 
this, and closely related problems. 
It is referred to as the detection of 
“Aberrant Behavior1”, “Novelties2”, 
“Anomalies3”, “Faults4”, “Surprises5”, 
“Deviants6” ,“Temporal Change7”, and 
“Outliers8”.

1. Brutlag, Kotsakis et. al.
2. Daspupta et. al., Borisyuk et. al.
3. Whitehead et. al., Decoste
4. Yairi et. al.
5. Shahabi, Chakrabarti
6. Jagadish et. al.
7. Blockeel et. al., Fawcett et. al.
8. Hawkins.



et. al. 

The blue time series at the top is a normal 
healthy human electrocardiogram with an 
artificial “flatline” added. The sequence in 
red at the bottom indicates how surprising
local subsections of the time series are 
under the measure introduced in Shahabi 
et. al. 

Arrr... what be wrong with 
current approaches?



Our Solution

Based on the following intuition, a 

pattern is surprising if its frequency of 

occurrence is greatly different from 

that which we expected, given 

previous experience…

This is a nice intuition, but useless unless we can 

more formally define it, and calculate it efficiently 



Note that unlike all previous attempts to solve this 
problem, our notion surprisingness of a pattern is not tied 
exclusively to its shape. Instead it depends on the 
difference between the shape’s expected frequency and 
its observed frequency. 

For example consider the familiar head and shoulders
pattern shown below...

would flag such patterns.

The existence of this pattern in a stock market time series 
should not be consider surprising since they are known to occur 
(even if only by chance). However, if it occurred ten times this 
year, as opposed to occurring an average of twice a year in 
previous years, our measure of surprise will flag the shape as 
being surprising. Cool eh?

The pattern would also be surprising if its frequency of 
occurrence is less than expected. Once again our definition 
would flag such patterns.



Tarzan (R) is a registered 

trademark of Edgar Rice 

Burroughs, Inc.

We call our algorithm… Tarzan!

some pants?

“Tarzan” is not an 
acronym. It is a pun on 
the fact that the heart 
of the algorithm relies 
comparing two suffix 
trees, “tree to tree”!

Homer, I hate to be a fuddy-
duddy, but could you put on 
some pants?



Definition 1: A time series pattern P, 
extracted from database X is surprising 
relative to a database R, if the 
probability of its occurrence is greatly 
different to that expected by chance, 
assuming that R and X are created by the 
same underlying process.

We begin by defining some 
terms… Professor Frink?



Definition 1: A time series pattern P, 
extracted from database X is surprising 
relative to a database R, if the 
probability of occurrence is greatly 
different to that expected by chance, 
assuming that R and X are created by the 
same underlying process.

But you can never know the 
probability of a pattern you have 
never seen!

And probability isn’t even defined 
for real valued time series!



We need to discretize the time series 

into symbolic strings… SAX!!

aaabaabcbabccb

Once we have done this, we can 

use Markov models to calculate 

the probability of any pattern, 

including ones we have never 

seen before



principalskinner

If x = principalskinner

Σ is 

{a,c,e,i,k,l,n,p,r,s}

|x|  is  16

skin is a substring of x

prin is a prefix of x

ner is a suffix of x

If  y = in,   then  fx(y) = 2

If  y = pal, then  fx(y) = 1

principalskinner



Can we do all this in linear space 

and time?

Yes! Some very clever 

modifications of 

suffix trees (Mostly 

due to Stefano 

Lonardi) let us do this 

in linear space. 

An individual pattern 

can be tested in 

constant time!



We would like to demonstrate two 

features of our proposed approach

• Sensitivity (High True Positive Rate)

The algorithm can find truly surprising 

patterns in a time series.

• Selectivity (Low False Positive Rate)

The algorithm will not find spurious 

“surprising” patterns in a time series

Experimental Evaluation
Sensitive 

and 
Selective, 

just like me
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Experiment 2: Video (Part 1)
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We zoom in on this section in the next slide



Experiment 2: Video (Part 2)
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We consider a dataset that contains 

the power demand for a Dutch 

research facility for the entire year 

of 1997. The data is sampled over 15 minute 

averages, and thus contains 35,040 points. 

Demand for 
Power? 

Excellent!

0 200 400 600 800 1000 1200 1400 1600 1800 2000
500

1000

1500

2000

2500

The first 3 weeks of the power demand dataset. Note the 
repeating pattern of a strong peak for each of the five 

weekdays, followed by relatively quite weekends

Experiment 3: Power Demand (Part 1)



Tarzan TSA Tree IMM

We used from Monday January 6th to Sunday 

March 23rd as reference data. This time 

period is devoid of national holidays. We 

tested on the remainder of the year.

We will just show the 3 most surprising 

subsequences found by each algorithm. For 

each of the 3 approaches we show the entire 

week (beginning Monday) in which the 3 

largest values of surprise fell. 

Both TSA-tree and IMM returned sequences 

that appear to be normal workweeks, however 

Tarzan returned 3 sequences that correspond 

to the weeks that contain national holidays in 

the Netherlands. In particular, from top to 

bottom, the week spanning both December 

25th and 26th and the weeks containing 

Wednesday April 30th (Koninginnedag, 

“Queen's Day”) and May 19th (Whit 

Monday). 

Mmm.. 
anomalous..  

Experiment 3: Power Demand (Part 2)



NASA recently said “TARZAN 
holds great promise for the 
future*”.

There is now a journal version 
of TARZAN (under review), if 
you would like a copy, just ask.

In the meantime, let us 
consider motif discovery… 

* Isaac, D. and Christopher Lynnes, 2003. Automated Data Quality Assessment in the Intelligent 

Archive, White Paper prepared for the Intelligent Data Understanding program.



SAX allows Motif 

Discovery!

Winding Dataset
( The angular speed of reel 2 )

0 500 1000 150 0 2000 2500

Informally, motifs are reoccurring patterns…



Motif Discovery

 

W inding Dataset  
(T he angular speed of reel 2) 

0 500 1000 1500 2000 2500  

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 

A  B C 

A  B C 

To find these 3 motifs would require about 

6,250,000 calls to the Euclidean distance function.



· Mining association rules in time series requires the discovery of motifs. 

These are referred to as primitive shapes and frequent patterns. 

· Several time series classification algorithms work by constructing typical 

prototypes of each class. These prototypes may be considered motifs. 

· Many time series anomaly/interestingness detection algorithms essentially 

consist of modeling normal behavior with a set of typical shapes (which we see 

as motifs), and detecting future patterns that are dissimilar to all typical shapes.

· In robotics, Oates et al., have introduced a method to allow an autonomous 

agent to generalize from a set of qualitatively different experiences gleaned 

from sensors. We see these “experiences” as motifs.

· In medical data mining, Caraca-Valente and Lopez-Chavarrias have 

introduced a method for characterizing a physiotherapy patient’s recovery 

based of the discovery of similar patterns. Once again, we see these “similar 

patterns” as motifs.

• Animation and video capture… (Tanaka and Uehara, Zordan and Celly)

Why Find Motifs?



Definition 1. Match: Given a positive real number R (called range) and a time series T containing a

subsequence C beginning at position p and a subsequence M beginning at q, if D(C, M) ≤ R, then M is

called a matching subsequence of C.

Definition 2. Trivial Match: Given a time series T, containing a subsequence C beginning at position

p and a matching subsequence M beginning at q, we say that M is a trivial match to C if either p = q

or there does not exist a subsequence M’ beginning at q’ such that D(C, M’) > R, and either q < q’< p

or p < q’< q.

Definition 3. K-Motif(n,R): Given a time series T, a subsequence length n and a range R, the most

significant motif in T (hereafter called the 1-Motif(n,R)) is the subsequence C1 that has highest count

of non-trivial matches (ties are broken by choosing the motif whose matches have the lower

variance). The Kth most significant motif in T (hereafter called the K-Motif(n,R) ) is the subsequence

CK that has the highest count of non-trivial matches, and satisfies D(CK, Ci) > 2R, for all 1 ≤ i < K.

0 100 200 3 00 400 500 600 700 800 900 100 0

T

Space Shuttle STS - 57 Telemetry
( Inertial Sensor )

Trivial

Matches

C



OK, we can define motifs, but 

how do we find them?

The obvious brute force search algorithm is just too slow…

Our algorithm is based on a hot idea from bioinformatics, 

random projection* and the fact that SAX allows use to 

lower bound discrete representations of time series.

* J Buhler and M Tompa. Finding motifs using random projections. In 

RECOMB'01. 2001.
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time series T of length 

1,000, and a motif of 
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A simple worked example of our motif discovery algorithm

The next 4 slides
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A mask {2,4} was randomly chosen, 

so the values in columns {2,4} were 

used to project matrix into buckets.

Once again, collisions are 

recorded by incrementing the 

appropriate location in the 

collision matrix
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A Simple Experiment

Lets imbed two motifs into a random walk time 

series, and see if we can recover them
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Some Examples of Real Motifs
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How Fast can we find Motifs?

Brute Force
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TGGCCGTGCTAGGCCCCACCCCTACCTTGCA

GTCCCCGCAAGCTCATCTGCGCGAACCAGA

ACGCCCACCACCCTTGGGTTGAAATTAAGGA

GGCGGTTGGCAGCTTCCCAGGCGCACGTAC

CTGCGAATAAATAACTGTCCGCACAAGGAGC

CCGACGATAGTCGACCCTCTCTAGTCACGAC

CTACACACAGAACCTGTGCTAGACGCCATGA

GATAAGCTAACACAAAAACATTTCCCACTAC

TGCTGCCCGCGGGCTACCGGCCACCCCTGG

CTCAGCCTGGCGAAGCCGCCCTTCA

Let us consider the utility of 

SAX for visualizing time 

series. We start with an 

apparent digression, 

visualizing DNA….

The DNA of two species…

Are they similar?
CCGTGCTAGGGCCACCTACCTTGGTCCG

CCGCAAGCTCATCTGCGCGAACCAGAAC

GCCACCACCTTGGGTTGAAATTAAGGAG

GCGGTTGGCAGCTTCCAGGCGCACGTAC

CTGCGAATAAATAACTGTCCGCACAAGG

AGCCGACGATAAAGAAGAGAGTCGACCT

CTCTAGTCACGACCTACACACAGAACCT

GTGCTAGACGCCATGAGATAAGCTAACA
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TCTAGTCACGACCTACACACAGAACCTG

TGCTAGACGCCATGAGATAAGCTAACA

CA

AC AT

AA AG

CACA

AC ATAC AT

AA AGAA AG

CA

AC AT

AA AG

CACA

AC ATAC AT

AA AGAA AG

CACA

AC ATAC AT

AA AGAA AG

0.02

CACA

AC ATAC AT

AA AGAA AG

0.04

0.03

0.09 0.04

0.07 0.02

0.11 0.03

0

1



CCGTGCTAGGCCCCACCCCTACCTTGCA

GTCCCCGCAAGCTCATCTGCGCGAACCA

GAACGCCCACCACCCTTGGGTTGAAATT

AAGGAGGCGGTTGGCAGCTTCCCAGGCG

CACGTACCTGCGAATAAATAACTGTCCGC

ACAAGGAGCCCGACGATAGTCGACCCTC

TCTAGTCACGACCTACACACAGAACCTG

TGCTAGACGCCATGAGATAAGCTAACA

OK. Given any DNA 

string I can make a 

colored bitmap, so what?



Note Elephas maximus is the Indian Elephant, Loxodonta africana is 

the African elephant and Pan troglodytes is the chimpanzee. 



Two Questions

• Can we do something 

similar for time series?

• Would it be useful?



Can we do make bitmaps for time series?

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

accbabcdbcabdbcadbacbdbdcadbaacb…

Yes, with SAX!

Time Series Bitmap



a b

c d

5 7

3 3

Imagine we have

the following SAX

strings…

abcdba

bdbadb

cbabca

There are 5 “a”

There are 7 “b”

There are 3 “c”

There are 3 “d”

7 We can paint the 

pixels based on 

the frequencies

Time Series Bitmaps



While they are all example of EEGs, example_a.dat is 

from a normal trace, whereas the others contain examples 

of spike-wave discharges.



We can further enhance 

the time series bitmaps 

by arranging the 

thumbnails by “cluster”, 

instead of arranging by 

date, size, name etc

We can achieve this with 

MDS.

July.txt June.txt April.txt

May.txt Sept.txt

March.txt

Oct.txt Feb.txt

Nov.txt Jan.txt

Dec.txt

August.txt

January

0

100

200

300

December
August

One Year of Italian Power Demand

We can further enhance 

the time series bitmaps 

by arranging the 

thumbnails by “cluster”, 

instead of arranging by 

date, size, name etc

We can achieve this with 

MDS.



A well known dataset 

Kalpakis_ECG, allegedly 

contains 70 ECGS

If we view them as time 

series bitmaps, a handful 

stand out…

normal1.txt normal10.txt normal11.txt

normal12.txt

normal13.txt normal2.txt

normal3.txtnormal4.txt

normal5.txt

normal6.txt

normal7.txt

normal8.txt

normal9.txt

normal14.txtnormal15.txt

normal16.txt

normal17.txt

normal18.txt



Some of the data are not 

heartbeats! They are the 

action potential of a 

normal pacemaker cell 0 100 200 300 400 500

0 100 200 300 400 500

initial rapid 

repolarization

0 100 200 300 400 5000 100 200 300 400 500

ventricular depolarization

initial rapid 

repolarization

“plateau” stage

repolarizatio

nrecovery 

phase

0 100 200 300 400 500

normal1.txt normal10.txt normal11.txt

normal12.txt

normal13.txt normal2.txt

normal3.txtnormal4.txt

normal5.txt

normal6.txt

normal7.txt

normal8.txt

normal9.txt

normal14.txtnormal15.txt

normal16.txt

normal17.txt

normal18.txt



We can test how much useful 

information is retained in the bitmaps 

by using only the bitmaps for 

clustering/classification/anomaly 

detection 
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We can test how much useful 

information is retained in the bitmaps 

by using only the bitmaps for 

clustering/classification/anomaly 

detection 

Cluster 1 (datasets 1 ~ 5):

BIDMC Congestive Heart Failure Database (chfdb): record chf02

Start times at 0, 82, 150, 200, 250, respectively

Cluster 2 (datasets 6 ~ 10):

BIDMC Congestive Heart Failure Database (chfdb): record chf15

Start times at 0, 82, 150, 200, 250, respectively

Cluster 3 (datasets 11 ~ 15):

Long Term ST Database (ltstdb): record 20021

Start times at 0, 50, 100, 150, 200, respectively

Cluster 4 (datasets 16 ~ 20): 

MIT-BIH Noise Stress Test Database (nstdb): record 118e6

Start times at 0, 50, 100, 150, 200, respectively

Data Key



We can test how much useful 

information is retained in the bitmaps 

by using only the bitmaps for 

clustering/classification/anomaly 

detection 
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Here the bitmaps are almost the same.

Here the bitmaps are very 

different. This is the most 

unusual section of the time 

series, and it coincidences 

with the PVC.

Here is a Premature Ventricular 

Contraction (PVC) 



Premature ventricular contraction Premature ventricular contractionSupraventricular escape beat

Annotations by 

a cardiologist



The Last Word
The sun is setting on all other 
symbolic representations of 
time series, SAX is the only
way to go



• For most classic data mining tasks 

(classification, clustering and 

indexing), SAX is at least as good as 

the raw data, DFT, DWT, SVD etc.

• SAX allows the best anomaly 

detection algorithm. 

• SAX is the engine behind the only 

realistic time series motif discovery 

algorithm.

SAX Summary



The Last Word
The sun is setting on all other 
symbolic representations of 
time series, SAX is the only
way to go



Conclusions

• SAX is posed to make major contributions to 

time series data mining in the next few years.

•A more general conclusion, if you want to 

solve you data mining problem, think 

representation, representation, representation.



The slides that follow demonstrate that 

SAX is as good as DFT, DWT etc for the 

classic data mining tasks, this is 

important, but not very exciting, thus 

relegated to this appendix. 



Experimental Validation

• Clustering

– Hierarchical

– Partitional

• Classification

– Nearest Neighbor

– Decision Tree

• Indexing

– VA File

• Discrete Data only

– Anomaly Detection

– Motif Discovery



Clustering

• Hierarchical Clustering

– Compute pairwise distance, merge similar 

clusters bottom-up

– Compared with Euclidean, IMPACTS, and 

SDA



Hierarchical Clustering
      Euclidean 

IMPACTS (alphabet=8)   SDA   

  SAX 
    

Hierarchical Clustering



Clustering

• Hierarchical Clustering

– Compute pairwise distance, merge similar clusters 

bottom-up

– Compared with Euclidean, IMPACTS, and SDA

• Partitional Clustering

– K-means

– Optimize the objective function by minimizing the sum 

of squared intra-cluster errors

– Compared with Raw data



Partitional (K-means) Clustering

Partitional (k-means) Clustering
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Classification

• Nearest Neighbor

– Leaving-one-out cross validation

– Compared with Euclidean Distance, IMPACTS, 

SDA, and LP∞

– Datasets: Control Charts & CBF (Cylinder, 

Bell, Funnel)



Nearest Neighbor
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Classification
• Nearest Neighbor

– Leaving-one-out cross validation

– Compared with Euclidean Distance, IMPACTS, SDA, 

and LP∞

– Datasets: Control Charts & CBF (Cylinder, Bell, 

Funnel)

• Decision Tree

– Defined for real data, but attempting to use DT on time 

series raw data would be a mistake

• High dimensionality/Noise level would result in deep, bushy 

trees

– Geurts (’01) suggests representng time series as 

Regression Tree, and training decision tree on it.
0 50 100

Adaptive Piecewise 

Constant Approximation



Decision (Regression) Tree

Dataset SAX Regression Tree 

CC 3.04 ± 1.64 2.78 ± 2.11 

CBF 0.97 ± 1.41 1.14 ± 1.02 

 



Indexing

• Indexing scheme similar to VA (Vector 

Approximation) File

– Dataset is large and disk-resident

– Reduced dimensionality could still be too high 

for R-tree to perform well

• Compare with Haar Wavelet



Indexing
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