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Important! Read This!

These slides are from an early talk about SAX, some slides
will make little sense out of context, but are provided here to
give a quick intro to the utility of SAX. Read [1] for more
details.

You may use these slides for any teaching purpose, so long as they are
clearly identified as being created by Jessica Lin and Eamonn Keogh.

You may not use the text and 1images 1n a paper or tutorial without
express prior permission from Dr. Keogh.

[1] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003). A Symbolic Representation of Time
Series, with Implications for Streaming Algorithms. In proceedings of the 8" ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. San
Diego, CA. June 13.



Outline of Talk

* Prologue: Background on Time Series Data Mining
* The importance of the right representation

* A new symbolic representation

» motif discovery

e anomaly detection

e visualization

» Appendix: classification, clustering, indexing
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What are Time Series?

A time series 1S a collection of observations

made sequentially in time.
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Time Series are Ubiquitous! 1

People measure things...

» Schwarzeneggers popularity rating.

 Their blood pressure.

» The annual rainfall in New Zealand.
e The value of their Yahoo stock.

e The number of web hits per second.

... and things change over time.

W “‘\/WN

Thus time series occur 1n virtually every medical, scientific and
businesses domain.




Image data, may best be thought of as time series...
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Video data, may best be thought of as time series...
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What do we want to do with the time series data?

Clustering Classification R R
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All these problems require similarity matching
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Euclidean Distance Metric

Given two time series \MM/(;\\/
\—jQ\—

0=9q;.-.9,
and
C=c...c,
their Euclidean distance 1s

defined as:

D(Q, C) = i(qi _Ci)2 D(O,C)



The Generic Data Mining Algorithm

* Create an approximation of the data, which will fit in main
memory, yet retains the essential features of interest

» Approximately solve the problem at hand in main memory

* Make (hopefully very few) accesses to the original data on disk
to confirm the solution obtained in Step 2, or to modify the
solution so 1t agrees with the solution we would have obtained on

the original data

. . . _\\.
But which approximation @
should we use? AN




Time Series
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The Generic Data Mining Algorithm (revisited)

* Create an approximation of the data, which will fit in main
memory, yet retains the essential features of interest

» Approximately solve the problem at hand in main memory

* Make (hopefully very few) accesses to the original data on disk
to confirm the solution obtained in Step 2, or to modify the

solution so 1t agrees with the solution we would have obtained on
the original data

" This only works if the
approximation allows
lower bounding

o




Exact (Euclidean) distance D(Q,S) Lower bounding distance D, 5(Q,S)
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Time Series

)epresentati%

Data Adastive Non Data Ada<ive

- Symbolic Trees Random

Mappings

Natural  Strings
Language

/

Interpolation .

We can live without “trees”, “random mappings and “natural

language’, but 1t would be nice 1f we could lower bound strings
(symbolic or discrete approximations)...

A lower bounding symbolic approach would allow data miners to...

 Use suffix trees, hashing, markov models etc
 Use text processing and bioinformatic algorithms



We have created the first
symbolic representation of time
series, that allows...

» Lower bounding of Euclidean distance
* Dimensionality Reduction
* Numerosity Reduction



We call our representation SAX
Symbolic Aggregate ApproXimation

: 1

baabccbc




First convert the time
series to PAA
representation, then
convert the PAA to
symbols

It take linear time

0 20 40 60 80 100 120

baabccbc
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Time series subsequences tend to have a
highly Gaussian distribution Why a
0.999 . 7
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A normal probability plot of the (cumulative) distribution of
values from subsequences of length 128.




Visual Comparison
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A raw time series of length 128 is transformed into the
word “ffffffeeeddcbaabceedcbaaaaacddee.”

— We can use more symbols to represent the time series since each symbol
requires fewer bits than real-numbers (float, double)



Euclidean Distance

PAA distance
lower-bounds
the Euclidean
Distance

MINDISTO, )=~ 3" (dist(q,.¢,))

dist() can be implemented using a
table lookup.




SAX 1s just as good as
other representations, or
working on the raw data

for most problems (Slides

shown at the end of this
presentation)

Now let us consider S
for two hot problems;"
novelty detection an
motif discovery

We will start with novelty ™
detection...




Novelty Detection

 Fault detection

* Interestingness detection
* Anomaly detection
 Surprisingness detection

(o e




..note that this problem should not be A

confused with the relatively simple problem
of outlier detection. Remember Hawkins
famous definition of an outlier... D

4 N

... an outlier is an observation
that deviates so much from
other observations as to arouse
suspicion that it was generated «

\from a different mechanism... = M

Kl'hanks Doug, the check is in ’rhe\

mC(i | . Douglas M. Hawkins
We are not interested in finding

-~/ individually surprising
Qatapoints, we are interested in
—

finding surprising patterns.  /




Ko’rs of good folks have worked on \
this, and closely related problems.
It is referred to as the detection of

1" W

"Aberrant Behavior!”, "Novelties?",
"Anomalies3”, "Faults*", "Surprises®”,
"Deviants®” ,"Temporal Change’”, and

"Outliers?".
Brutlag, Kotsakis et. al.

Daspupta et. al., Borisyuk et. al.
Whitehead et. al., Decoste
Yairi et. al.

Shahabi, Chakrabarti

Jagadish et. al.

Blockeel et. al., Fawcett et. al.
Hawkins.

©NO U WM




'Arrr... what be wrong with
current approaches?

i e e e I
NN

/The blue time series at the top is a nor'mal\
healthy human electrocardiogram with an
artificial “flatline" added. The sequence in
red at the bottom indicates how surprising

local subsections of the time series are
"\, under the measure introduced in Shahabi

] | \et.al. -/

|

/
/




Our Solution

Based on the following intuition, a
pattern 1s surprising 1if 1ts frequency of
occurrence 1s greatly different from
that which we expected, given
previous experience. ..



/No‘re that unlike all previous attempts to solve this \
problem, our notion surprisingness of a pattern is not tied
exclusively to its shape. Instead it depends on the
difference between the shape's expected frequency and
its observed frequency.

For example consider the familiar head and shoulders
pattern shown below... /

N

ﬁhe existence of this pattern in a stock market time series
should not be consider surprising since they are known to occur
(even if only by chance). However, if it occurred ften times this
year, as opposed to occurring an average of twice a year in
previous years, our measure of surprise will flag the shape as
being surprising. Cool eh?
The pattern would also be surprising if its frequency of
occurrence is less than expected. Once again our definition
would flag such patterns. /




We call our algorithm... Tarzan!

"Tarzan" is not an
acronym. It is a pun on
the fact that the heart
of the algorithm relies
comparing two suffix
trees, "tree to tree’l

Homer, I hate to be a fuddy-

duddy, but could you put on
\gme pants?

Tarzan (R) is a registered
trademark of Edgar Rice
Burroughs, Inc.




‘We begin by defining some
terms... Professor Frink? 20

@8 -

QQQQQQQ

/Defini'rion 1: A time series pattern P,
extracted from database X is surprising
relative to a database R, if the
probability of its occurrence is greatly
different to that expected by chance,
assuming that R and X are created by the

same underlying process. %




: N

3 <robabili’ry of occurrence

/Bu’r you can nhever know the )
probability of a pattern you have
never seenl!

And probability isn't even defined
for real valued time series! J




We need to discretize the time series
into symbolic strings... SAX!!

/\M | ——> aaabaabcbabccb

Once we have done this, we can
use Markov models to calculate
the probability of any pattern,
including ones we have never
seen before




If x = principalskinner\

> 1S
ta,c,e,i,k,1,n,p,r,s}
x| is 16

skin 1s a substring of x

prin 1s a prefix of x
ner 1sasuffix of x

If y = in, then f(y)=2
\Ify = pal, then f(y)=1 J




Can we do all this 1n linear space

and time?

O a . ba & aba aba $
Yes! Some very clever : ki—- =2 L- S
modifications of ba B b3Sy
suffix trees (Mostly N
due to Stefano ba . ba . a@a  adbas
Lonardi) let us do this aba..s s oat
in linear space. ba  apa e

N PO G O
° . . \H%hhﬁ___E!l

An 1ndividual pattern ba  aba ana.s
can be tested in : -

constant time!

1 2 3 1 5 & 7 & 9% 10 11 12 12 14 15 1& 17 18 1% 20 21 22
abaababaabaababaababayts



Experimental Evaluation

We would like to demonstrate two
features of our proposed approach

* Sensitivity (High True Positive Rate)
The algorithm can find truly surprising
patterns in a time series.

* Selectivity (Low False Positive Rate)
The algorithm will not find spurious
“surprising” patterns in a time series

-

Sensitive
and
Selective,

~




Experiment 1: Shock ECG

Training data M JM
Ll

Test data
(subset)

| | | | | | | | J
0 200 400 600 800 1000 1200 1400 1600

Tarzan’s level of /\_/\ M

. | J
Su I’p rise 0 200 400 600 800 1000 1200 1400 1600




Training data

il
0000000000

Test data
(subset)

Tarzan’s level of
surprise

N

We zoom 1n on this section in the next slide

|
0000000000

0000000000



Experiment 2: Video (Part 2)
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Experiment 3: Power Demand (Part 1)

We consider a dataset that contains
the power demand for a Dutch
research facility for the entire year

of 1997. The data is sampled over 15 minute Demand for

averages, and thus contains 35,040 points. Power?
Excellent!

2500

20001

1500

1000

500 | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

The first 3 weeks of the power demand dataset. Note the
repeating pattern of a strong peak for each of the five
weekdays, followed by relatively quite weekends




Experiment 3: Power Demand (Part 2)

We used from Monday January 6™ to Sunday Mmm..

March 23" as reference data. This time ahomalous..
period is devoid of national holidays. We
tested on the remainder of the year. ,

We will just show the 3 most surprising | e
subsequences found by each algorithm. For

each of the 3 approaches we show the entire ']
week (beginning Monday) in which the 3

largest values of surprise fell. J

Both TSA-tree and IMM returned sequences \
that appear to be normal workweeks, however
Tarzan returned 3 sequences that correspond
to the weeks that contain national holidays in 4 ¥
the Netherlands. In particular, from top to

bottom, the week spanning both December
25" and 26™ and the weeks containing
Wednesday April 30t (Koninginnedag, .

“Queen's Day”) and May 19% (Whit
Monday). Tarzan TSA Tree IMM

=0




@L\SA recently said "TARZAN
holds great promise for the
future™”.

9

There is now a journal version
of TARZAN (under review), if
you would like a copy, just ask.

In the meantime, let us
Qnsider motif discovery... J

* Isaac, D. and Christopher Lynnes, 2003. Automated Data Quality Assessment in the Intelligent
Archive, White Paper prepared for the Intelligent Data Understanding program.



SAX allows Motit
Discovery!

WWW\WL — Winding Dataset

‘ | ( The angular speed qf reel 2 )
0 500 1000 1500 2000 2500

Informally, motifs are reoccurring patterns...



Motif Discovery

Winding Dataset C .

‘ | ‘ (The angular speed o‘f reel 2)

0 500 1000 1500 2000 2500

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120

140



Why Find Motifs?

- Mining association rules in time series requires the discovery of motifs.
These are referred to as primitive shapes and frequent patterns.

- Several time series classification algorithms work by constructing typical
prototypes of each class. These prototypes may be considered motifs.

- Many time series anomaly/interestingness detection algorithms essentially
consist of modeling normal behavior with a set of typical shapes (which we see
as motifs), and detecting future patterns that are dissimilar to all typical shapes.

- In robotics, Oates et al., have introduced a method to allow an autonomous
agent to generalize from a set of qualitatively different experiences gleaned
from sensors. We see these “experiences” as motifs.

- In medical data mining, Caraca-Valente and Lopez-Chavarrias have
introduced a method for characterizing a physiotherapy patient’s recovery
based of the discovery of similar patterns. Once again, we see these “similar
patterns” as motifs.

« Animation and video capture... (Tanaka and Uehara, Zordan and Celly)



Trivial
Matches

Space Shuttle STS-57 Telemetry

( Inertial Sensor )

0 100 200 300 400 500 600 700 800 900 1000

Definition 1. Match: Given a positive real number R (called range) and a time series T containing a
subsequence C beginning at position p and a subsequence M beginning at g, if D(C, M) < R, then M is
called a matching subsequence of C.

Definition 2. 7rivial Match: Given a time series 7, containing a subsequence C beginning at position
p and a matching subsequence M beginning at g, we say that M is a trivial match to C if either p = g
or there does not exist a subsequence M’ beginning at g " such that D(C, M’) > R, and either ¢ <g'<p

orp<g'<g.

Definition 3. K-Motif(n,R): Given a time series 7, a subsequence length » and a range R, the most
significant motif in T (hereafter called the /-Motif(n,R)) is the subsequence C, that has highest count
of non-trivial matches (ties are broken by choosing the motif whose matches have the lower
variance). The K™ most significant motif in 7 (hereafter called the K-Motifin,R) ) is the subsequence
C that has the highest count of non-trivial matches, and satisfies D(Cy, C) > 2R, forall 1 < i <K.



OK, we can define motifs, but
how do we find them?

The obvious brute force search algorithm is just too slow...

Our algorithm 1s based on a 4ot idea from bioinformatics,
random projection™ and the fact that SAX allows use to
lower bound discrete representations of time series.

* J Buhler and M Tompa. Finding motifs using random projections. In
RECOMB'01. 2001.




A simple worked example of our motif discovery algorithm

%Wﬂwm
0\\ 500 1000
Cl_j\\\
& Ci}c b a Assume that we have a
1| al c¢| b| a time series 7' of length
2 b| ¢/ ab 1,000, and a motif of
J . a =23 {ab.,c}
n=16 length 16, which occurs
=4 . .
sg| al ¢ ¢| a " twice, at time 7, and
il bl el ¢ ¢ time 7.




A mask {1,2} was randomly chosen,
so the values in columns {1,2} were
used to project matrix into buckets.
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1 58
457
2 985
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1 2

Collisions are recorded by

incrementing the appropriate
location in the collision matrix
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A mask {2,4} was randomly chosen,
so the values in columns {2,4} were
used to project matrix into buckets.

58

985

C a
C b
C a
C C
2 4

v

/
//V

58

985

58

985

Once again, collisions are
recorded by incrementing the
appropriate location in the
collision matrix

1 2 . 58 . 985



We can calculate the expected values 1n the
matrix, assuming there are NO patterns...

(a—l

E(k,a,w,d,t) = (i]i(l -Lj (Wj
i=0 w !

58

Suppose
985

E(kawdt)= 2

A

I

A

v

- 985



A Simple Experiment

Lets imbed two motifs into a random walk time
series, and see 1f we can recover them

0 20 40 60 80 100 120 0 20 40 60 80 100 120

0 200 400 600 800 1000 1200



Planted Motifs




“Real” Motifs
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Some Examples of Real Motifs

Motor 1 (DC Current) 1\ m N

| |

0 500 1000 1500 2000

o AL

Astrophysics (photon Count)
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How Fast can we tind Motifs?
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Let us consider the utility of
SAX for visualizing time
series. We start with an
apparent digression,
visualizing DNA.....

The DNA of two species...

Are they similar?

TGGCCGTGCTAGGCCCCACCCCTACCTTGH(
GTCCCCGCAAGCTCATCTGCGCGAACCAG
ACGCCCACCACCCTTGGGTTGAAATTAAG(
GGCGGTTGGCAGCTTCCCAGGCGCACGTA
CTGCGAATAAATAACTGTCCGCACAAGGAC
CCGACGATAGTCGACCCTCTCTAGTCACG!/
CTACACACAGAACCTGTGCTAGACGCCAT(
GATAAGCTAACACAAAAACATTTCCCACTA
TGCTGCCCGCGGGCTACCGGCCACCCCTG
CTCAGCCTGGCGAAGCCGCCCTTCA

CCGTGCTAGGGCCACCTACCTTGGTC(
CCGCAAGCTCATCTGCGCGAACCAGA.
GCCACCACCTTGGGTTGAAATTAAGG!
GCGGTTGGCAGCTTCCAGGCGCACGT
CTGCGAATAAATAACTGTCCGCACAAG
AGCCGACGATAAAGAAGAGAGTCGAC
CTCTAGTCACGACCTACACACAGAACC
GTGCTAGACGCCATGAGATAAGCTAAC




CCGTGCTAGGGCCACCTACCTTGGTCC
CCGCAAGCTCATCTGCGCGAACCAGAA
GCCACCACCTTGGGTTGAAATTAAGGA
GCGGTTGGCAGCTTCCAGGCGCACGTA
CTGCGAATAAATAACTGTCCGCACAAGH
AGCCGACGATAAAGAAGAGAGTCGACC
CTCTAGTCACGACCTACACACAGAACC
GTGCTAGACGCCATGAGATAAGCTAAC.







oofoodontor

o

CCGTGCTAGGCCCCACCCCTACCTTG(
GTCCCCGCAAGCTCATCTGCGCGAAC!
GAACGCCCACCACCCTTGGGTTGAAA
AAGGAGGCGGTTGGCAGCTTCCCAGCG
CACGTACCTGCGAATAAATAACTGTCC
ACAAGGAGCCCGACGATAGTCGACCC
TCTAGTCACGACCTACACACAGAACC(C]
TGCTAGACGCCATGAGATAAGCTAACA




.... OK. Given any DNA
string I can make a
colored bitmap, so what?

CCGTGCTAGGCCCCACCCCTACCTTG(
GTCCCCGCAAGCTCATCTGCGCGAAC!
GAACGCCCACCACCCTTGGGTTGAAA
AAGGAGGCGGTTGGCAGCTTCCCAGCG
CACGTACCTGCGAATAAATAACTGTCC
ACAAGGAGCCCGACGATAGTCGACCC
TCTAGTCACGACCTACACACAGAACC(C]
TGCTAGACGCCATGAGATAAGCTAACA




& Genomes

© File  Edit  Wiew
- Oﬁack -\__}

: address |53 cipcjv | |

Homo sapiens  Loxodonka

africana

Elephas

maximus troglodytes

& Genomes

B 10|
Tools Help | ﬁ.

WY X9 -

File Edit

View Favorites

@Back v Q v

Address ID C:\Genomes

B

Pan troglodytes Elephas maximus
DNA DNA
33 KB

34 KB

Homo sapiens
DMNA
33 KB

Loxodonta africana
DMNA

34 KB

Note Elephas maximus 1s the Indian Elephant, Loxodonta africana 1s
the African elephant and Pan troglodytes 1s the chimpanzee




Two Questions

& Genomes -10| x|
File Edit View Favorites Tools Help | .ﬂ'

* Can we do something
similar for time series?

@Backvé)' fh [j X") '

Address I@ C:\Genomes . Go

Pan troglodytes Elephas maximus
'HH DNA
. 34 KB
* Would 1t be useful?
Loxodonta africana
DNA
34 KB

Homo sapiens
Ir JH




Can we do make bitmaps for time series?

AT
4

Yes, with SAX!

accbabcdbcabdbcadbacbdbdcadbaach. ..

b aa|ab|ba|bb
d ac|ad|bc|bd

calcb|dal|db
C d cc|cd | dc|dd

Time Series Bitmap ——

\




Time Series Bitmaps
Imagine we have

the following SAX
strings. ..

a | b
abcdba c | d
bdbadb
cbabca 5 7
There are 5 “a” 313
There are 7 “b” W .
) € Can pain C
There are 3 “c” pixels based on
There are 3 “d” the frequencies




= D:\EEG signals from rats

File Edit View Favorites Tools Help

Address |3 D:\EEG signals from rats

example a.dat example b.dat
Electroencephalogram Electroencephalogram
27 KB 25 KB

example c.dat example d.dat
Electroencephalogram Electroencephalogram
33 KB 34 KB

4 pbjects 116 KB i My Computer

While they are all example of EEGs, example a.dat 1s
from a normal trace, whereas the others contain examples
of spike-wave discharges.



& AEM Power Demand ltaly 1997 FEX
[ ar

. File Edit ‘Yiew Favorites Tools  Help

We can further enhance
the time series bitmaps
by arranging the
thumbnails by “cluster”,

instead of arranging by ‘ ‘ ‘
July.txt June.txt April.txt

date, size, name etc

We can achieve this with
MDS.

Oct.txt Feb.txt Dec.txt
March.tx Nov.txt Jan.tx

AR A A s VAN

aaaaa ry

uuuuu




A well known dataset
Kalpakis ECG, allegedly
contains 70 ECGS

If we view them as time
series bitmaps, a handful
stand out...

& Kalpakis_ECG_Normal

S=1E

@ Kalpakis_ECG_Normal

© Fle Edit Yiew Favortes Tools  Help

normal9.txt

normal8.txt normal5.txt

normall.txt normall0.txt normalll.txt

normall3.txt normal7.txt normal2.txt

normal4.txt normal3.txt normall2.txt

normal6.txt

DER

o

normall5.txt normall4.txt

e

normall6.txt normall8.txt

i

normall7.txt

. File Edit Wiew Faworites Tools  Help 11.'

I?I normnall  bxk I'::] norrals, bk I'::] normall 1, kxk I'::] normall 6, kxk
|'§J normalz, bxk Iij normal? bk Iij normall 2, kxk =| normall? . bxk
|'§J niarral3, bk Iij niarrals, bxk Iij norrnall 3. kxk Iij norrnall S, kxk
|'.:=j norrnald, bk réj normald, bxk réj norrnall4.bxk
|'§] normals, bk EI norrmal 10, kxk EI normalls. kxk




ventricular depolarization  “plateau” stage

/’\I/'\]/['\\[; repolarizatio
rapi Y\rllecovery
repolarization

/
-
T

& Kalpakis_ECG_Normal FEX

. Flle Edit Yew Favortes Tools  Help l';’

normal9.txt

H'x
g
Em
g

-

.

normall.txt normall0.txt normall I.txt normall5.txt normall4.txt
normall3.txt normal7.txt normal2.txt normall6.txt normall8.txt

o
o
g

normal3.txt normall2.txt normall7.txt

g
=
b
3

normal6.txt

Some of the data are not
heartbeats! They are the
action potential of a
normal pacemaker cell




We can test how much useful
information is retained in the bitmaps
by using only the bitmaps for
clustering/classification/anomaly
detection
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We can test how much useful
information is retained in the bitmaps
by using only the bitmaps for
clustering/classification/anomaly
detection

Data Key

Cluster 1 (datasets 1 ~ 5):
BIDMC Congestive Heart Failure Database (chfdb): record chf02
Start times at 0, 82, 150, 200, 250, respectively

Cluster 2 (datasets 6 ~ 10):
BIDMC Congestive Heart Failure Database (chfdb): record chfl5
Start times at 0, 82, 150, 200, 250, respectively

Cluster 3 (datasets 11 ~ 15):
Long Term ST Database (Itstdb): record 20021
Start times at 0, 50, 100, 150, 200, respectively

Cluster 4 (datasets 16 ~ 20):
MIT-BIH Noise Stress Test Database (nstdb): record 118e6
Start times at 0, 50, 100, 150, 200, respectively



We can test how much useful
information is retained in the bitmaps
by using only the bitmaps for
clustering/classification/anomaly
detection




Here 1s a Premature Ventricular
Contraction (PVC)

2 Applet Viewer: AnomalyDetectil

£ Applet Viewer: AnomalyDetection
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Here the bitmaps are almost the same.

Here the bitmaps are very
different. This 1s the most
unusual section of the time

series, and 1t coincidences
with the PVC.
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The Last Word

The sun is setting on all other
symbolic representations of
time series, SAX is the only
way to go




SAX Summary

* For most classic data mining tasks
(classification, clustering and
indexing), SAX 1s at least as good as
the raw data, DFT, DWT, SVD etc.

* SAX allows the best anomaly
detection algorithm.

* SAX 1s the engine behind the only
realistic time series motif discovery .
algorithm. |



The Last Word

The sun is setting on all other
symbolic representations of
time series, SAX is the only
way to go




Conclusions

* SAX 1s posed to make major contributions to
time series data mining in the next few years.

*A more general conclusion, 1f you want to
solve you data mining problem, think
representation, representation, representation.



The slides that follow demonstrate that
SAX 1s as good as DFT, DWT etc for the
classic data mining tasks, this 1s
important, but not very exciting, thus
relegated to this appendix.



Experimental Validation

Clustering

— Hierarchical

— Partitional
Classification

— Nearest Neighbor
— Decision Tree
Indexing

— VA File

Discrete Data only
— Anomaly Detection
— Motif Discovery



Clustering

Hierarchical Clustering

— Compute pairwise distance, merge similar
clusters bottom-up

— Compared with Euclidean, IMPACTS, and
SDA



Hlerarchlcal Clustering
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Clustering

* Hierarchical Clustering

— Compute pairwise distance, merge similar clusters
bottom-up

— Compared with Euclidean, IMPACTS, and SDA
 Partitional Clustering

— K-means

— Optimize the objective function by minimizing the sum
of squared intra-cluster errors

— Compared with Raw data



Partitional (K-means) Clustering
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Classification

* Nearest Neighbor

— Leaving-one-out cross validation

— Compared with Euclidean Distance, IMPACTS,
SDA, and LPo

— Datasets: Control Charts & CBF (Cylinder,
Bell, Funnel)



Nearest Neighbor
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Classification

* Nearest Neighbor
— Leaving-one-out cross validation
— Compared with Euclidean Distance, IMPACTS, SDA,

and LPoo
— Datasets: Control Charts & CBF (Cylinder, Bell,

Funnel)

Adaptive Piecewise

e Decision Tree
Constant Approximation

— Defined for real data, but attempting to use DT on time f\/\/_

series raw data would be a mistake
» High dimensionality/Noise level would result in deep, bushy ,—\
trees
— Geurts (’01) suggests representng time series as =
Regression Tree, and training decision tree on it.

0 50 100



Decision (Regression) Tree

Dataset SAX Regression Tree

CC 3.04 £ 1.64 278 £2.11

CBF 0.97t 141 1.14 £ 1.02




Indexing

* Indexing scheme similar to VA (Vector
Approximation) File
— Dataset 1s large and disk-resident

— Reduced dimensionality could still be too high
for R-tree to perform well

* Compare with Haar Wavelet



Indexing
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