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What are Time Series?    1 of 2
A time series is a collection of observations made 
sequentially in time. 

More than most types of data, time series lend themselves to visual
ƛƴǎǇŜŎǘƛƻƴ ŀƴŘ ƛƴǘǳƛǘƛƻƴǎΧ
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For example, looking at 
the numbers in this 
green vector tells us 
nothing.
But after plotting the 
data, we can recognize a 
heartbeat, and possibly 
even diagnose this 
person's disease.
This tutorial will leverage 
the visual intuitiveness 
of time series.
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Mantled Howler Monkey
Alouatta palliata

What are Time Series?    2 of 2
!ǎ ŀƴ ŀǎƛŘŜΧ όƴƻǘ ǘƘŜ Ƴŀƛƴ Ǉƻƛƴǘ ŦƻǊ ǘƻŘŀȅύ

Many types of data that are not true time series can be 
fruitfully transformed into time series, including DNA, speech, 
textures, core samples, ASCII text, historical handwriting, 
novels and even shapes.
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Similarity Measures

ÅA similarity measure compares two time series and 
produces a number representing their similarity
ÅA distance measure is an inverted similarity measure

ÅLockstep Measures
ÅEuclidean Distance
ÅCorrelation Coefficient
ÅCross-correlation

ÅElastic Measures
ÅDynamic Time Warping
ÅEdit Distance
ÅLongest Common Subsequence

5



Similarity Search
ÅA query Q is given of length m

Ån independent candidate time series C1, C2Σ ΧΣ /n

ÅNearest Neighbor query
ÅFindKnearestneighborof Qundera distancemeasured

ÅRange Query
ÅFind all time series C where Ὠὗȟὅ ‭

ÅDensity Estimation
ÅCount the number of time series C where Ὠὗȟὅ ‭
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Why Similarity Search?

ÅMost data mining algorithms (e.g. clustering, 
classification, outlier detection, etc.) use similarity 
measures and similarity search as subroutines

ÅInterpretablemining of heterogeneous data objects 
is possible through similarity search

ÅGreat way to embed scientific knowledge in mining 
algorithms by modifying and adapting similarity 
measures

7
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Top-level Outline

ÅSimilarity Measures

ÅSimilarity Search
ÅLock-step search (e.g. Correlation Search)
ÅElastic search (e.g. DTW search)



Euclidean Distance Metric

y

x

d(x,y)

Given two time series

x = x1Χxn

and 

y = y1Χyn

their z-Normalized Euclidean distance is 

defined as:
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tŜŀǊǎƻƴΩǎ /ƻǊǊŜƭŀǘƛƻƴ /ƻŜŦŦƛŎƛŜƴǘ

ÅGiven two time series ●and ◐of lengthά. 

ÅCorrelation Coefficient:

ὧέὶὶ●ȟ◐
В ὼώ ά‘‘

ά„„

ÅWhere ‘
В

and „
В

‘

ÅSufficient Statistics:

В ὼώ В ὼ В ώ В ὼ В ώ

One linear scan



Relationship with Euclidean 
Distance
Ὠ●ȟ◐ ςὲρ ὧέὶὶ●ȟ◐

ὼ and ώ

Ὠ ●ȟ◐ ὼ ώ

ÅCorrelation coefficient does not obey triangular inequality
ÅMaximizing correlation coefficient can be achieved by 

minimizing normalized Euclidean distance and vice versa

Abdullah Mueen, Suman Nath, JieLiu: Fast approximate correlation for massive time-series data. SIGMOD Conference 2010: 171-182
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The Importance of z-Normalization and 
correlation 1 of 2

Essentially all datasets must have every
subsequence z-normalized. 

There are a handful of occasions where 
it does not make sense to z-normalize, 
but in those cases, similarity search 
does not make sense either.

In this example, we begin by extracting 
heartbeats  from two unrelated people.

Even without normalization, it happens 
that  both sets have almost the same 
mean and standard deviation. Given 
that, do we need to bother to normalize 
them?  (next slide)

Extracted 
beats 
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Extracted 
beats 

Without normalization, the results are 
verypoor, some blue heartbeats are 
closer to red heartbeats than there are 
to another blue beat . 

With normalization, the results are 
perfect.

Un-normalized Normalized

In this example, we extracted heartbeats from 
two different time series, and clustered them  
with and without normalization.

The Importance of z-Normalization and 
correlation 2 of 2

Surprisingly z-normalizing can be a 
computational bottleneck, but later we will 
show you how to fix that.
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What is Dynamic Time Warping?  

ÅDTW is analgorithmfor measuring similarity between 
two time series which may vary (i.e. warp) in timing.

DTWEuclidean 
Distance

ÅThis invariance to 
warping is critical 
in many domains, 
for many tasks. 

ÅWithout warping 
invariance, we are 
often condemned 
to very poor 
results. 
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C

QC

Q

How is DTW 
Calculated? I

We create a matrix the size of 
|Q| by |C|, then fill it in with 
the distance between every 
possible pair of points in our 
two time series.



16

C

Q

How is DTW 
Calculated? II

C

Q

Warping path w

í
ì
ë= ä=

KwCQDTW
K

k k1
min),(

Every possible warping between two 
time series, is a path through the matrix. 
We want the bestƻƴŜΧ

This recursive function gives us the 
minimum cost path

g(i,j)  = d(qi,cj) + min{ g(i-1,j-1), g(i-1,j ), g(i,j-1) }
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Let us visualize the cumulative matrix on a real world problem I

This example shows two 
one-week periods from 
an electrical power 
demand time series.

Note that although they 
both describe 4-day work 
weeks, the blue sequence 
had Monday as a holiday, 
and the red sequence had 
Wednesday as a holiday.
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DTW is a Distance Measure, not a Metric 1 of 2

Requirements to be a metric 
D(A,B) = D(B,A) Symmetry 

D(A,A) = 0 Constancy of Self-Similarity

D(A,B) = 0 IIf A=B Positivity (Separation)

D(A,B) ¢D(A,C) + D(B,C)Triangular Inequality

Yesfor DTW

No for DTW

Normally we prefer metrics over measures for two reasons:

ÅNon-Metrics can sometimes give pathological solutions when 
clustering or classifying data etc.
ÅAlmost all speed-ǳǇ άǘǊƛŎƪǎέ ŦƻǊ ƘƛƎƘ ŘƛƳŜƴǎƛƻƴŀƭ Řŀǘŀ ŜȄǇƭƻƛǘ ǘƘŜ 
Triangular Inequality. 
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C

Q

Sakoe-Chiba Band

Understanding w, the Warping Constraint

We need to understand w
because:

ÅThe most useful speedup 
tricks all exploit w.

ÅThe value chosen for w
can greatly affect accuracy. 

n

The value of w is the maximum 
amount the warping path is allow 
to deviatefrom the diagonal.

It is normally expressed as the ratio 

w = r/n (or as a percentage)

r
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Generalizing to Multi-Dimensional Data 1 of 3

It is increasingly common to 
encounter Multi-Dimensional (MD) 
time series data. Here we measure 
the X-axis acceleration of both the 
left and right hand.  

There are two obvious ways to compute the MD DTW score.

Independent: Just compute the DTW score for each 
dimension independently, and sum up each score.

Dependent:  Create a single distance matrix that 
reflect the distance between each corresponding pair 
of time series, then find the singlewarping path and 
distance as per normal.

Q

C

x

y

x

y

DTWI(Q,C) = DTW(Qx,Cx) + DTW(Qy,Cy) = 2.4

DTWD(Q,C) = DTW({Qx,Qy},{ Cx,Cy}) = 3.2

Given these pair of 2D 
objectsΧ



21

Generalizing to Multi-Dimensional Data 2 of 3

So, of DTWI and DTWD which is best?

Lets think of it this way:

The thing we want classify is an physical process, the utterance of the 
ǿƻǊŘ άbicycleέΣ ǘƘŜ ōŜŀǘ ƻŦ ŀ ƘŜŀǊǘΣ ŀƴ ŀǳǘƻƎǊŀǇƘΣ ŀ ǘŜƴƴƛǎ ǎƘƻǘ ŜǘŎΦ 

We cannot see the actual event, just 2 or more time series it created.
ÅIf the physical process affects the time series simultaneously, then DTWD will 
probably be best. We call this the tightly coupled case.

ÅIf the physical process affects the time series with varying lags, then DTWI will 
probably be best. We call this the loosely coupled case.

Example: Suppose we measure the directionless 
acceleration of the left and right wrists of a tennis 
player.

¢ƘŜ άǇƘȅǎƛŎŀƭ ǇǊƻŎŜǎǎέ ƛǎ ŀ backhand stoke. If a two-
handed backstroke, the two time series are tightly 
coupled. If a one-handed backhand, the two hands 
will be very loosely coupled .

Jo-Wilfried Tsonga



Generalizing to Multi-Dimensional Data 3 of 3

We can demonstrate the claim in the last slide with experiments.

Let us begin with a dataset that we are 100% sure is tightly coupled, 
ǘƘŜƴ ǎƭƻǿƭȅ ŀŘŘ ǎƻƳŜ ǊŀƴŘƻƳ ǘƛƳŜ ƭŀƎǎ ƛƴǘƻ ǘƘŜ ŘŀǘŀΧ 
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More Random Lag  ­

We know that the handwriting dataset is 
tightly coupled. We find that DTWD has an 
error-rate of about 0.42, much better than 
that DTWI has an error-rate of about 0.55.

However, as we uncouple the perfect 
synchronization by adding some random lag, 
DTWD quickly gets worse, while that DTWI is 
barely effected.

handwriting dataset 



Longest Common Subsequence Measures 

(Allowing for Gaps in Sequences)

Gap skipped

M. Vlachos, G. Kollios and D. Gunopulos, "Discovering similar multidimensional trajectories,"ICDE 2002, pp. 673-684.



Longest Common Subsequence (LCSS)

ignore majority 

of noise

match

match

Advantages of LCSS:

A. Outlying values not matched

B. Distance/Similarity distorted less

C. Constraints in time & space

Disadvantages of DTW:

A. All points are matched

B. Outliers can distort distance

C. One-to-many mapping

LCSS is more resilient to noise than DTW.



Longest Common Subsequence
Similar dynamic programming solution as DTW, but 

now we measure similarity not distance.

Can also be expressed as distance
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Preprocessing

Uniform Scaling

O(n)

Z-Normalization

O(n)

Rotation Invariance

O(n)

Euclidean Distance

O(n)

Cross-correlation

O(n log n)

Sliding Distance

O(n log n)

Complexity Invariance

O(n)

V

U

Length Normalization

O(n)

V

U

Alignment Postprocessing

Various extensions of 
lock-step measures

ÅPreprocessing 
ÅAlignment
ÅPostprocessing

Let us assume that a sin wave 
should match with another sin 
wave without considering phase, 
amplitude, frequency, noise, etc.

1. Michail Vlachos, D. Gunopulos, and GautamDas. 2004. 
Rotation invariant distance measures for trajectories.KDD 
'04. 707-712. 

2. Dragomir Yankov, EamonnJ. Keogh,Jose Medina,Bill Yuan-
chi Chiu,Victor B. Zordan: Detecting time series motifs under 
uniform scaling.KDD 2007: 844-853

3. Lexiang Ye, EamonnJ. Keogh: Time series shapelets: a new 
primitive for data mining.KDD 2009: 947-956

4. Gustavo E. A. P. A. Batista,Xiaoyue Wang, EamonnJ. Keogh: A 
Complexity-Invariant Distance Measure for Time Series.SDM 
2011: 699-710



Other Similarity Measures

ÅMove-Split-Merge (MSM) to achieve both dynamic 
alignment and metric properties

ÅMUNICH, PROUD, DUST: Similarity measure for 
uncertain time series

27

We will consider Euclidean 
distance and Dynamic Time 
Warping distance as 
representatives

1. Alexandra Stefan,Vassilis Athitsos, GautamDas: The Move-Split-

Merge Metric for Time Series.IEEE Trans. Knowl. Data Eng. 25(6): 

1425-1438 (2013)

2. SmrutiR. Sarangi and Karin Murthy. 2010. DUST: a generalized notion 
of similarity between uncertain time series. KDD '10 , 383-392.

3. M. Yeh, K. Wu, P. Yu, and M. Chen. PROUD: a probabilistic approach to 
processing similarity queries over uncertain data streams. In EDBT, 
pages 684ς695. ACM, 2009.

4. J. Aßfalg, H.-P. Kriegel, P. Kr̈ oger, and M. Renz. Probabilistic similarity 
search for uncertain time series. In SSDBM, pages 435ς443, 2009.
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Top-level Outline

ÅSimilarity Measures

ÅSimilarity Search
ÅLock-step search (e.g. Correlation Search)
ÅElastic search (e.g. DTW search)
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GEMINI Framework*

Solution: Quick-and-dirty filter: 

Åextract k features

Åmap into a point in k-d feature space

Åorganize points with off-the-shelf spatial access 
ƳŜǘƘƻŘ όΨ{!aΩύ

Åretrieve the answer using a NN query

Ådiscard false alarms

C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. In 
Proceedings 1994 ACM SIGMOD Conference, Mineapolis, MN, USA, 1994.

* R. Agrawal, C.Faloutsos, and A.Swami. Efficient similarity search in sequence databases. In FODO 
Conference, volume 730, 1993. 
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GEMINI: Key Requirement

ÅGEMINI works when:
Dfeature (F(x), F(y)) D(x, y)

to ensure zero false negatives

ÅDfeature is a metric to have working Spatial Indexes

ÅDfeature is significantly inexpensivecompared to D 
to gain efficiency
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Lower Bound 1:
DFT Coefficients 

Discrete Fourier Transform (DFT) ὢ
ρ

ὲ
ὼὩ

ὼ
ρ

ὲ
ὢὩInverse DFT

Ὦ ρ

Property 1: DFT is an orthonormal transform,

Вὼ Вὢ ČВὼ ώ Вὢ ὣ

Property 2: DFT of a real sequence is symmetric in 
magnitude.  Thus we need only half of the transform.
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Lower Bound 1:
DFT based Lower Bound

Real time series contains most of the energy in few 
frequencies, commonly in the first few.

ὼ ώ ς

Ⱦ

ὢ ὣ ς ὢ ὣ

If  we take the difference between any subset 
of k coefficients, we get a lower bound
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The graphic shows a time series 

with 128 points.

The raw data used to produce the 

graphic is also reproduced as a 

column of numbers (just the 

first 30 or so points are 

shown).
n = 128

Lower Bound 1:
Example
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We can decompose the 

data into 64 pure sine 

waves using the Discrete 

Fourier Transform (just the 

first few sine waves are 

shown).

The Fourier Coefficients 

are reproduced as a 

column of numbers (just 

the first 30 or so 

coefficients are shown).

Lower Bound 1:
Example
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n = 128

k = 8

Only k coefficients can provide a 
good approximation of the data 
and produce an inexpensive 
lower bound.



baabccbc

Lower Bound 2:
Symbolic Aggregate ApproXimation(SAX)
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Visual Comparison

A raw time series of length 128 is transformed into the 

word ñffffffeeeddcbaabceedcbaaaaacddee.ò
ïWe can use more symbols to represent the time series since each symbol 

requires fewer bits than real-numbers (float, double)

DFT

PLA

Haar

APCA
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b
c
d
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f
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Lower Bound 2:
SAX provides a lower bound



Time Series 
Representations

Data Adaptive Non Data Adaptive

SpectralWavelets Piecewise
Aggregate

Approximation

Piecewise 
Polynomial

SymbolicSingular
Value

Decomposition

Random
Mappings

Piecewise
Linear

Approximation

Adaptive
Piecewise
Constant

Approximation

Discrete
Fourier

Transform

Discrete
Cosine

Transform

Haar Daubechies
dbn   n > 1

Coiflets Symlets

Sorted 
Coefficients

Orthonormal Bi-Orthonormal

Interpolation Regression

Trees

Natural 
Language

Strings

0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 1001200 20 40 60 80 100 120 0 20 40 60 80 100120

DFT DWT SVD APCA PAA PLA

0 20 40 60 80 100120

SYM

UUCUCUCD

U
U

C
U

C
U

D
D



GEMINI: Other Assumptions

ÅThe database consists of fixed length time series and 
the query length matches the length of the database
ÅNot true for most real-application (e.g. seismology, 

physiology)

ÅThe method is exact
ÅDoes not sell accuracy for speed

ÅThe time series in the database are independent
ÅNot true for subsequence search

45



Generic Prefix-based Search
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Prefix distance is not a lower bound 
of the original distance

1. Two time series ●and ◐of length ά

2. Prefix distance is a trivial lower bound of un-normalized distance

3. Normalized Euclidean distance Ὠ●ȟ◐, can increase or decrease if we extend ●
and ◐by appending the next two numbers.
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10

Without Normalization

Values Changed

1 2 3 4 5
-4
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0
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With Normalization



Lower-bound upon extension 1 of 3
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Length 4 Length 5 Length 5

Append 10and re-normalize Append 20and re-normalizeNormalized

Area between blue and red is 
the distance between the signals

If infinity is appended to both the signals, they will 
have zero area/distance.



Lower-bound upon extension 2 of 3

ÅὨ ● ȟ◐ Ὠ ●ȟ◐ Ὠ ●ȟ◐

Variances of ● and ◐ , „ ᾀ

ᾀ maximum normalized value in the database
A safe approximation of ᾀ ÍÁØὥὦί●ȟὥὦί◐

Abdullah Mueen: Enumeration of Time Series Motifs of All Lengths.ICDM 2013: 547-556




