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What are Time Series? 1 of 2

A time series IS a collection of observations made

sequentially in time.

More than most types of data, time series lend themselvestal
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For example, looking at
the numbers in this
green vector tells us
nothing.

But afterplotting the
data, we can recognize a
heartbeat, and possibly
even diagnose this
person's disease.

This tutorial will leverage
the visual intuitiveness
of time series.
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What are Time Series? 2 of 2
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Many types of data that are ntue time series can be
fruitfully transformed into time series, including DNA, speecr

textures, core samples, ASCII téws$torical handwriting,
novels and eveshapes
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Similarity Measures

AA similarity measure compares two time series and
produces a number representing their similarity

AA distance measure is an inverted similarity measure

ALockstep Measures
AEuclidean Distance
A Correlation Coefficient
A Crosscorrelation

AElastic Measures
ADynamic Time Warping
AEdit Distance
ALongest Common Subsequence



Similarity Search

AA queryQis given of length
An independent candidate time seri€s, C> X /

ANearest Neighbor query
A FindK nearestneighborof Q undera distancemeasured

ARange Query
A Find all time series C whef¥0 ) |

ADensity Estimation
A Count the number of time series C whé@& hd) |

Final
orlglnal Answer
set

JLquery .>




Why Similarity Search?

AMost data mining algorithms (e.g. clustering,
classification, outlier detection, etc.) use similarity
measures and similarity searchsgroutines

mining of heterogeneous data objects
IS possible through similarity search

AGreat way tc in mining
algorithms by modifying and adapting similarity
measures



Toplevel Outline

ASimilarity Measures

ASimilarity Search
ALockstep search (e.g. Correlation Searct
AElastic search (e.g. DTW search)



Euclidean Distance Metric

Given two time series

X = % XX,
X

and

Y = i Xy,
their zNormalized Euclidean distance is
defined as: Yy

W )
Ao O W A
. d(x.y)
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A Given two time series and « of lengthd .
ACorrelation Coefficient:

v . B ww o °
weE (ohn) ,
a b3} b3}
AWhere: and, °Z

A Sufficient Statistics:
B woww B w B ®w B w B

One linear scan



Relationship with Euclidean
Distance
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Normalized Euclidean Distance

A Correlation coefficient does not obey triangular inequality
A Maximizing correlation coefficient can be achieved by
minimizing normalized Euclidean distance and vice versa

Abdullah Mueen, Suman NathieLiu: Fast approximate correlation for massive tisggies data. SIGMOD Conference 2010192



The Importance of-kKlormalization and

correlationl of?2

~ BIDMC Congestive Heart
Failure Database:.

BIDMC Congestive Heart
Failure Database:.
0 1000

Extracted
beats )

0 150 300

Essentially all datasets must hasvery
subsequence-normalized.

There are a handful of occasions where
It does not make sense termormalize,
but in those cases, similarity search
does not make sense either.

In this example, we begin by extracting
heartbeats from two unrelated people.

Even without normalization, it happens
that both sets have almost the same
mean and standard deviation. Given
that, do we need to bother to normalize
them? (next slide)
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The Importance of-kKlormalization and
correlation2 of2

Without normalizationthe results are
BIDMC Congestive Heart verypoor, some blue heartbeats are
" Failure Database: closer to red heartbeats than there are
- to another blue beat .

With normalizationthe results are
perfect.

BIDMC Congestive Heart
Failure Database:.

J— -
3 9 1000 | ? JJV
Extracted ﬂ}
]_

beats m)
0 150 300 Un-normalized Normalized
N N In this example, we extracted heartbeats fro
Surprisingly -normalizing can be a two different time series, and clustered themn
computational bottleneck, but later we will with and without normalization.

show you how to fix that. 13



What is Dynamic Time Warping?

ADTW is amlgorithmfor measuring similarity between
two time series which may vary (vearp) in timing.

A This invarianceo
warping is critical

IN many domains,
for many tasks.

A Without warping
Invariance, we are
often condemned
to very poor
results.

r L= ]

TEuclidean DTW
Distance

1 L
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HOW iS DTW We create a matrix the size of
Calculated? | Q| by [CJ, then fill it in with

the distance between every
possible pair of points in our
two time series.

Q ®

15



Every possible warping between two

HOW IS DTW time series, is a path through the matri
We want thebest2 y S X

Calculated? Il

e..K

DTW(Q,C) =min i

el © -

This recursive function gives us the
minimum cost path ﬁ!ﬁ

o)) =d(@,q) + min{gi-1,-1),9(-1,), 9llj-1) } AN Warping pathw *




Let us visualize the cumulative matrix on a real world problem

This example shows two
one-week periods from
an electrical power
demand time series.

Note that although they
both describe 4day wor
weeks, the blue sequenc
had Monday as a holiday
and the red sequence ha
Wednesday as a holiday

17




DTW Is a Distanddeasure not aMetric 1 of 2

Requirements to be a metric

D(A,B) =D(B,A) Symmetry
Yesior DTW D(ALA) =0 Constancy of SeSimilarity
D(A,B) = 0If A=B Positivity (Separation)
Nofor DTW

D(A,B)¢ D(A,C) 4D(B,C) Triangular Inequality

Normally we prefer metrics over measures for two reaso

ANon-Metrics can sometimes give pathological solutions when
clustering or classifying data etc.

AAlmost all speedizL] ¢ G NA O1 a¢ F2NJ KAIK F
Triangular Inequality.

18



Understandingv, the Warping Constraint

The value ofvis the maximum
amount the warping path is allow
to deviatefrom the

It is normally expressed as the rat
W =r/n (or as a percentage)

We need to understand,
because:

AThe most useful speedup
tricks all exploitw.

AThe value chosen fav
can greatly affect accuracy

SakoeChiba Band -



Generalizing to MudDimensional Data 1 Gf

\ It is increasingly common to
encounter MulttDimensional (MD)  Given these pair of 2D
V/\\\\\\\\\\V//A\\\\\//\\\\V‘ time series data. Here we me(asu)re objects

il 1o Xexis acceleration of both the o

X

y
- e

X

y

There are two obvious ways to compute the MD DTW score.

Independent Just compute the DTW score for each
dimension independently, and sum up each score.
I

DTW,(Q,C) = DTW(Q,,C) + DTW(Q,.C,) =2.4

Dependent Create a single distance matrix that
reflect the distance between each corresponding pair

of time series, then find theinglewarping path and
distance as per normal.
DTW5(Q.C) = DTW({Q,Q}{ C,.C}) = 3.2 |




Generalizing to MulDimensional Data 2 Gf

So, oDTWand DTW, which is best?

Lets think of it this way:

The thing we want classify is an physical process, the utterance of
g2 Nbeycte = GKS oSFG 2F | KSI NI X

We cannot see the actual event, just 2 or more time series it creat

Af the physical process affects the time series simultaneously, EAaA; will
probably be best. We call this thightly coupledcase.

Af the physical process affects the time series with varying lags,Di&k will
probably be best. We call this th@osely coupledase.

Example Suppose we measure the directionless
acceleration of the left and right wrists of a tennis JoWilfried Tsonga
player.
¢ KS & LIKE & A ObatkhaniNsBokpiBaitios ®AN
handed backstroke, the two time series are tightly
coupled. If a ondhanded backhand, the two hands
will be very loosely coupled .




Generalizing to MulDimensional Data 3 Gf

We can demonstrate the claim in the last slide with experiments.

Let us begln with a dataset that we are 100% sure is tightly couple
0KSYy atz2¢feé IRR a2YS NIXyR2Y

We know that thehandwriting datasetis N

tightly coupled We find that DT\Whas an * handwriting dataset
error-rate of about 0.42, much better than DTW,

that DTWhas an errofrate of about 0.55. - DTW

However, as we uncouple the perfect
synchronization by adding some random lag, °°|
DTW, quickly gets worse, while that DWW 04 o 5 10 15 20 25 30 35 40
barely effected. More Random Lag

@Error Rate




Longest Common Subsequence Measure

(Allowing for Gaps in Segquences)

oLy
L

Gap skipped ~~

M. Vlachos, GKaollios and D.Gunopulos"Discovering similar multidimensional trajectorieKCDE 2002 pp. 673684.



Longest Common Subsequence (LCSS)

LCSS is more resilient to noise than DTW.

‘ 4‘“

] ign_ore majority
:  iof noise

<« match ->

ie— match —

Disadvantages of DTW:
A. All points are matched
B. Outliers can distort distance

C. One-to-many mapping

Advantages of LCSS:
A. Outlying values not matched
B. Distance/Similarity distorted less

C. Constraints in time & space



Longest Common Subsequence

Similar dynamic programming solution as DTW, but
now we measure similarity not distance.
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Various extensions of
lock-step measures

A Preprocessing
A Alignment
A Postprocessing

Let us assume that a sin wave
should match with another sin
wave without considering phase,
amplitude, frequency, noise, etc.

1. Michail Vlachos, DGunopulosandGautamDas. 2004.
Rotation invariant distance measures for trajectoriéBD
'04. 707712.

2. Dragomir Yanko\Eamonn]. Keoghjose MedinaBill Yuan
chi ChiuyVictor B. Zordan: Detecting time series motifs und
uniform scalingkDD 2007: 84853

3. Lexiang Ye&Eamonn). Keogh: Time serishapelets a new
primitive for data miningK DD 2009: 949856

fln

4 om)
\._ Uniform Scaling_/
4 om)
\ Z-Normalization/
- I

0](3)]

\Euclidean Distany

%otation Invariany

4.  Gustavo E. A. P. A. Batistaaoyue WangzamonnJ. Keogh: A

Complexitylnvariant Distance Measure for Time SeriedBM
2011: 699710

O(n log n)

\_ Sliding Distance /

O(n)

e

U
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k Complexity Invananc

k Length Normallzatlo
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Other Similarity Measures

AMove-SplitMerge (MSM) to achieve both dynamic
alignment andnetric properties

AMUNICH, PROUD, DUST: Similarity measure for
uncertain time series

We will consider Euclideat
" Merge Motic for Time SeriesteE Trans. knowl. bata eng. 556 d1Stance and Dynamic Tin

14251438 (2013)

. SmrutiR. Sarangi and Karin Murthy. 2010. DUST: a generalized notionwarpi ng d |Stan ce as

of similarity between uncertain time series. KDD '10 ,-383. .

. M.Yeh K. Wu, P. Yu, and M. Chen. PROUD: a probabilistic approach t

processing similarity queries over uncertain data streams. In EDBT, (re p rese ntatlves

pages 684695. ACM, 2009.

. J.ARfalg H-P.Kriege] P.Kr'oger and M. Renz. Probabilistic similarity 27
search for uncertain time series. In SSDBM, pages4i3, 20009.






Toplevel Outline

ASimilarity Measures

ASimilarity Search
ALockstep search (e.g. Correlation Searct
AElastic search (e.g. DTW search)
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Generic Search

original
DB

Final
Answer
set

=
=

Computational costO(m n



GEMINI Framework*

Solution: Quicland-dirty filter:
Aextractk features
Amap into a point irk-d feature space

Aorganize points with ofthe-shelf spatial access
YSGK2R 6W{! aQo

Aretrieve the answer using a NN query
Adiscard false alarms

* R. AgrawalC.FaloutsgsandA.Swami Efficient similarity search in sequence databases. In FODO
Conference, volume 730, 1993.

C. Faloutsos, MRanganathanand YManolopoulos Fast subsequence matching in theeries databases. In
Proceedings 1994 ACM SIGMOD Conferavioegapolis MN, USA, 1994.



Generic Search

Index on Answer original

A

: . Final
simplified Superset DB Answer
data set
A A m M
SN Ver_ify JL
TS ovgina |
_/\/\/'\_/\/\/\/\/— bB
NN—

.
.
"------.._.

L
.
.
e,
.
.
.
..
Cy
.
.

simplified
query
.j\N_query

Computational cost: O(m log |



GEMINI: Key Requirement

AGEMINI works when:
Dfeature (F(X)’ F(y)) D(X, y)

to ensure zero false negatives
AD;..... iS ametricto have working Spatial Indexes

AD:...... iS significantlynexpensivecompared toD
to gain efficiency



What is lower bounding?

Exact (Euclidean) distance D(Q,S) Lower bounding distance D ;(Q,S)

[ 26SN) 62dzy RAYy3 YSIya GKIFIG F2NIFEf v FyR

Ds(Q6 , 8B(R,S)



Lower Bound 1;
DFT Coefficients

Discrete Fourier Transform (DFT) & \/ﬂ,_ 0wQ QVop
g
. P .o —
Inverse DFT 0w — wa
VE

Property 1: DFT is an orthonormal transform,
Bo B|d| C B ®) Bld &

Property 2: DFT of a real sequence is symmetric in
magnitude. Thus we need only half of the transform.

N

20 40 60 80 100 120 20 40 60 80 100 120 35

Time Frequency

45
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Lower Bound 1;
DFT based Lower Bound

T
(v ®) ¢ [d & ¢ | &

If we take the difference between any subset
of k coefficients, we get a lower bound

Real time series contains most of the energy in few
frequencies, commonly in the first few.

36



Lower Bound 1;
Example Raw

DEIE]

1 1 1 1 1 1 ]
0 20 40 60 80 100 120 140

n=128

The graphic shows a time series
with 128 points.

The raw data used to produce th
graphic is also reproduced as a

column of numberg§ust the
first 30 or so points are
shown).



Lower Bound 1:
Example

1 1 1 1 1 1 ]
0 20 40 60 80 100 120 140

Raw Fourier
Data Coefficients

1.5698
1.0485
0.7160
0.8406
0.3709
0.4670
0.2667
0.1928
0.1635
0.1602
0.0992
0.1282
0.1438
0.1416
0.1400
0.1412
0.1530
0.0795
0.1013
0.1150
0.1801
0.1082
0.0812
0.0347
0.0052
0.0017
0.0002

We can decompose the
data into 64 pure sine
waves using the Discrete
Fourier Transform (just th
first few sine waves are
shown).

The Fourier Coefficients
are reproduced as a
column of numbers (just
the first 30 or so
coefficients are shown).



1 1 1 1 1 1
0 20 40 60 80 100 120

- N
2 V2 VAN
VAVAVAVA

We have
discarded
of the data.

]
140

Raw Fourier

Truncated
Fourier

Data Coefficients Coefficients

1.5698
1.0485
0.7160
0.8406
0.3709
0.4670
0.2667
0.1928
0.1635
0.1602
0.0992
0.1282
0.1438
0.1416
0.1400
0.1412
0.1530
0.0795
0.1013
0.1150
0.1801
0.1082
0.0812
0.0347
0.0052
0.0017
0.0002

1.5698

1.0485
0.7160 n=128

0.8406 k=8
0.3709
0.4670
0.2667
0.1928

Onlyk coefficients can provide a
good approximation of the data
and produce an inexpensive
lower bound.



Lower Bound 2:
SymbolicAggregateApproXimation(SAX)

L
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Lower Bound 2;

How to obtain SAX

First convert the time

series to PAA r—C
representation, then - l \.C C
[ =

convert the PAA to

symbols | I | b b
] \ ,
It take linear time La\il

baabcchc



Visual Canppaiison

A raw time series of length 128 is transformed into the

w O r féffffeaeddcbaabceedcbhaaaaacddeeo

I We can use more symbols to represent the time series since each sym
requires fewer bits than reabmbers (float, double)



Lower Bound 2;

SAX provides a lower bougg

DR(Q,C)* \F "

PAA distance
lower-bounds
the Euclidean
Distance

RRRRRRR dist() can be implemented using a

Q:

table lookup.




Time Series

Representations

/
Data Adaptlve

_—— |\

Sorted

Piecewise S'”Gllu'af Symbolic Trees

Coefficients Polynomla|Decomp05|t|0

Pﬁﬁgg}se édaptl\_/e Natural
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Approximation Constant Language
T T~ Approximabn

Interpolation Regression
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N antniil
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Strings

/ \ Mappings

Orthonormal BiOrthonormal Discrete
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Non Data Adaptive

[\ N\ T

Wavelets Random Sp ectral Piecewise
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Discrete
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Transform Transform

Haar DaubechiesCoiflets Symlets
dbn n>1
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GEMINI: Other Assumptions

AThe database consists of fixed length time series an
the query length matches the length of the database

ANot true for most reabpplication (e.g. seismology,
physiology)
AThe method is exact
ADoes not sell accuracy for speed

AThe time series in the database are independent
ANot true for subsequence search
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Generic Preftbased Search

Index on
prefixes of
simplified data

Answer original =T
Superset DB Answer

set

\/‘\«_smplned

A A - =
A againe JL/\
_/\/\/.\/\/\_ ong;BnaI

AA=

N_wm

Prefix of

query

Computational cost: O(m log |



Prefix distance Is not a lower bound
of the original distance

1. Two time serie® and « of lengthd
2. Prefix distance is a trivial lower bound of-narmalized distance

3. Normalized Euclidean distan€¥eht ), can increase or decrease if we extend
and « by appending the next two numbers.

10 4] Values Changed
9 K]
8| 2| :
7t 1]
6 0
I -1
A :
1 2 3 4 5 1 2 3 4 5

Without Normalization With Normalization



Lowerbound upon extensionof 3

Area between blue and red Is
the distance between the signals

Normalized Append and renormalize Append”0 and renormalize
2 e — 22— 2
1.5 157
1 1
0.5
0]
0 -0.5
1
2 3 4 s P12 3 4 s 2y 5 3 4
Length 4 Length 5 Length 5

If infinity I1s appended to both the signals, they wi
have zero area/distance.



Lowerbound upon extensionof 3

AQ (¢ hi ) —Q (ehh) Q ehn

Variances o ande¢ — 7 )(’g(

o maximum normalized value in the database
A safe approximationaf | A @ «(®)ho ok )

Abdullah Mueen: Enumeration of Time Series Motifs of All LengtBHM 2013: 547556






