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A Seismometer

Vertical channel seismometer
The heavy mass stays in the same place while the rest of the assembly vibrates as the ground vibrates. 

Heavy
mass



An Array/Network of Seismometers

Distribution of Global Seismographic Network (GSN) stations.
USGS GSN sites are shown in blue and IRIS/IDA stations are shown in green.Bighorn Arch Seismic Experiment (BASE) broadband stations in 

Wyoming and Montana region





Seismic Waves

• Body waves (Linear particle motion)
• P wave – longitudinal wave
• S wave – transverse wave

• Surface waves (non-linear particle motion)
• Rayleigh wave
• Love wave



Wave propagation

• Seismic waves reflect 
and refract

• There are shadow 
zones where some 
waves cannot reach

• Speed of these waves 
varies depending on 
the media



Where do earthquakes happen?

NEIC events (‘14,’17,’18) are red dots. 



How many earthquakes do happen? 
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Distribution of event magnitudes in Northern California

• Strong events are easy to notice, and 
easy to detect.

• Weaker events are rarely noticed, hard 
to detect, and often uncatalogued.

• Low magnitude events are frequent 
and potentially informative to 
prediction, classification and 
localization tasks.
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Need

https://www.norsar.no
Physical Geology, by Steven Earle
Usgs.gov

• To produce early warning for damage mitigation
• To enforce Comprehensive Nuclear-Test-Ban Treaty (CTBT)
• To understand earth structure and predict large magnitude events
• To understand the effect of human induced seismicity
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Signal Detection
Identify a spike in waveform 

as arrival

Phase Identification
Identify phase type of the 

arrival

Phase Association
Group phases from the 

same event

Bulletin Record
Derive attributes: 

magnitude, depth, etc.

One Trace Multiple Channels Multiple Stations Multiple Arrays
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Event Formation
Detect and classify all phase 

types

Seismic Data Processing Pipeline

24/7 analysts



Seismic Data Collection

• Event data from an already produced bulletin
• Generally queried by ranges of time and location of events
• All regional networks distribute bulletin: SCEDC, NCEDC, UU, NEIC

• Waveform data at a station 
• Generally queried by range of time
• https://service.iris.edu/fdsnws/dataselect/1/

• Real-time data at a station
• No query
• https://ds.iris.edu/ds/nodes/dmc/services/seedlink/

https://service.iris.edu/fdsnws/dataselect/1/
https://ds.iris.edu/ds/nodes/dmc/services/seedlink/


Key Challenges

• Real-time Data Processing
• 40Hz-100Hz data rate
• Large network with many stations

• Machine learning
• Planet scale learning
• Lack of ground truth!
• Location sensitivity
• heterogeneity in sensors and networks

• Constrained processing in defense applications
• Single station
• Far from the Event

• Monitoring Challenges
• No or few human involvement
• Variable system load
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Automated Seismic Signal Detection

The Problem: Given a long seismograph, spot the low magnitude seismic events.



Signal Processing Technique

Understanding and parameter setting of STA/LTA trigger algorithm, Amadej Trnkoczy

List of parameters
• STA window duration 
• LTA window duration
• STA/LTA trigger threshold level
• STA/LTA detrigger threshold level. 
• Trigger filters 
• Pre-event time (PEM)
• Post-event time (PET)

Very high false 
detection rate.
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Auto-correlation Technique

An autocorrelation method to detect low frequency earthquakes within tremor, J.R. Brown, G.C. Beroza, and D.R. Shelly, 
Geophysical Research Letters, 2008

One parameter, high accuracy, time consuming.

High correlation indicates identical dynamics at the source(s).

18



Approximate Correlation

Earthquake Detection Through Computationally Efficient Similarity Search
Clara E. Yoon, Ossian O’reilly, Karianne J. Bergen, Gregory C. Beroza Science Advances, 2015 : E1501057

Very FAST algorithm, 
admits few false 
detection.

19
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SeiSMo: Semi-supervised Motif Discovery
Nearest Neighbor Graph (NNG)

Sink

Catalog Events

Set of 
Discovered 
Events

• Create NNG
• Find sinks
• Count support of each sink
• If support is high enough report all nodes on the 

paths from any given node to the sink
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SeiSMo on OK
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April 8, 2014

Convolutional neural network for earthquake detection and location, Thibaut Perol, Michaël Gharbi and Marine Denolle
Science Advances 14 Feb 2018: Vol. 4, no. 2, e1700578 DOI: 10.1126/sciadv.1700578
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SeiSMo has detected novel events that existing methods missed.



Performance
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SeiSMo can process hours long seismographs in seconds.
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Phase Classification

• The Problem: Identify the phase in given 
waveforms from a three-component station 
with vertical, north-south, east-west 
channels at the arrival time.

• We consider only 3-C stations without any 
corroboration with other stations in the 
arrays.

• New monitoring stations are unlikely to be 
arrays and more likely to be uncalibrated 3-
C stations.

BHZ
BHE

BHN



Seismic Phases
• Six phases: P, Pg, 

Pn, S, Sn, Lg
• We consider the 

final phase that 
arrived at a 
station, ignoring 
path. For 
example, pPcP is 
considered as P. 

Havskov J., Ottemöller L. (2010) Earth Structure and Seismic Phases. In: Routine Data Processing in Earthquake Seismology. Springer, Dordrecht
USGS.gov



Phase Distributions
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t-SNE 
visualization 

of the 
feature 
space

https://lvdmaaten.github.io/tsne/

Longitudinal

Transverse

https://lvdmaaten.github.io/tsne/
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FASER: A Deep Neural Network for Seismic Phase Classification



Precision Recall F1-Score Accuracy
XGBoost 68.4 67.2 67.2 67.2
MLP 76.2 75.6 75.3 75.6
CNN 75.2 75.2 75.2 75.2
LSTM 75.7 74.3 75 75.3
CNN-Bi-LSTM 81.3 80.2 80.7 81.5
FASER 84.6 81.6 83.1 82.8

Comparison to other ML Classifiers



Model Performance on Held-out IMS Stations
Accuracy



Model Performance on Held-out Source Regions

Average accuracy is 0.7727 with standard deviation 0.0413
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Motivation
• Seismic depth helps us separate natural vs man-made seismic activity
• Current depth estimation is deterministic and requires high quality data
• The Problem: Predict depth of a seismic event given waveforms at various 

stations

Challenges
• Recording station should be right above the 

hypocenter
• Lack of accurate training data
• Multiple reference points for ground truth

37[1] redsismica.uprm.edu

1



Southern California 
dataset1

• Relocated earthquake depth
• 627,669 seismic events in the catalog
• 423 seismic stations
• ~40 years (1981 - 2019)
• Magnitude range: 2 - 4
• 8359 events collected
• Each arrival has 230 seconds (9200 sample) 

long waveform from 5 closest stations

1. https://scedc.caltech.edu/research-tools/alt-2011-dd-hauksson-yang-shearer.html 38



Preprocessing

39
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• Filtering (0.5-10 Hz)
• Down sample (40 samples/sec)
• Zero mean, min-max normalization
• Convert to ZRT components
• Continuous Wavelet Transform (CWT)



Septor model
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Waveform aggregator
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Station aggregator

42



43

• Comparison with physics-driven methods
• Comparison with state-of-the-art data-

driven methods
• Performance of Septor as binary classifier
• Experiment on transferability across region

Experimental Setup



Baseline [1]

Results

44[1] Holt et al. 2019

Septor

Septor outperforms
physics-informed features



Results (cont.)

45

Septor outperforms ML
based regressors



Performance of binary classifier

46

Accuracy Precision Recall F1 score

73.0 78.2 75.5 86.5

Septor performance
as binary classifier



Case study: Novel geographical region

47

Septor performance
degrades for novel 

geographical region

Northern
California

Southern
California

[1] geology.com

1
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Earthquake Arrival/Phase Association

Ian W. McBrearty, Joan Gomberg, Andrew A. Delorey, Paul A. Johnson; Earthquake Arrival Association with Backprojection and Graph Theory. Bulletin of the Seismological Society of America 2019;; 109 (6): 2510–2531. 
doi: https://doi.org/10.1785/0120190081

The Problem: Given a set of phases at a set of stations, cluster/associate the phases such that no 
station repeats in a cluster and the phases in a cluster obey physical travel-time laws. 

https://doi.org/10.1785/0120190081
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Consider six sensors on a 2D plane

Six sensors are on a 2D plane 
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Consider the signals observed at these sensors

Six sensors are on a 2D plane 
Observed Data – Each signal blip is a wave arrival 

at the sensor.

Time
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Where, when and how many events happened 
to produce this data?

Observed Data – Each signal blip is a wave arrival 
at the sensor.

Time

Assuming uniform wave propagation speed.
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Let us try an example 𝐸!
Time

Assuming uniform wave propagation speed. 𝐸! happened at this time

𝑆! observes 𝐸!(or 𝐸!arrives at 𝑆!)
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Let us try an example 𝐸!
Time

Assuming uniform wave propagation speed. 𝐸! happened at this time

𝑆" observes
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Let us try an example 𝐸!
Time

Assuming uniform wave propagation speed. 𝐸! happened at this time

𝑆# observes
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Let us try an example 𝐸!
Time

We can prove that one event cannot produce 
this data by solving a system of linear 
equations to find no real root. 𝐸! happened at this time

𝑆$ observes 
too late
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Let us try two example events 𝐸! and 𝐸"
Time

𝐸! happened at this time

𝐸" happened at this timeThese two events show a plausible explanations of the observed 
data. However, we assume that 𝐸! does not reach beyond 𝑆# and 
𝐸" does not reach beyond 𝑆$.

𝑡#𝑡"
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What happens when 𝐸! reaches 𝑆# ?
Time

𝑡#𝑡"

𝐸! happened at this time

𝐸" happened at this time
A sensor observes multiple events.
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What happens when 𝐸! generates multiple 
phases?

Time
𝑡#𝑡"

𝐸! happened at this time

𝐸" happened at this time
A sensor observes the same event multiple times based on the 
distance and dynamics of the event.

The time differences 
between two phases of 
the same event are 
identical.
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Spurious signals are observed at random time 
and location…

Time
𝑡#𝑡"

𝐸! happened at this time

𝐸" happened at this time
A sensor observes the same event multiple times based on the 
distance and dynamics of the event.

Spurious Signal



ML attempts to solve this problem

Ian W. McBrearty, Gregory C. Beroza; Earthquake Phase Association with Graph Neural Networks. Bulletin of the Seismological Society of America 2023;; 113 (2): 524–547. doi: https://doi.org/10.1785/0120220182



Challenges

• The number of earthquake events (and their locations) are unknown.
• Many observations/arrivals can be false, with uncertain pick times.
• Multiple earthquakes can occur nearby in time and space.
• Dozens or hundreds of stations must be processed.
• Station/sensor coverage and event distribution are highly heterogeneous.
• Most events are small and only observed on a small subset of stations/sensors.
• Sensors on earth are assumed to be on the surface of a sphere instead of the 2D plane in these examples.

• Rare but possible challenges: 
• Sensors are not always operational. 
• Sensors may change locations.
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Amplitude Window

The period and amplitude are 
measured at the largest, 

uninterrupted half-cycle in the 
seismograph.

The Problem: Find the largest 
uninterrupted half-cycle in the 

waveform.



ARA Labeled Dataset

Derived ‘ground-truth’ labeled 
metadata from EVAL1 bulletin 

Extracted matching signal windows 
from International Data Center (IDC) 
2017 – 2018 continuous waveform 
data.

65

Metadata Filtering Criteria Counts

Total arrival IDs 5,912,699

Arrivals with P or Pn phase label from 
preferred origins in 2017 or 2018

525,605

Arrivals with specified filtering 
parameters

197,670

AMP-Per window in signal window 175,481

51,800 BHZ time windows (3-C stations)

123,681 SHZ time windows (array beams)Final AM-P Dataset



Examples…

Some examples clearly shows a half-cycle ...



Examples…

… and some are not intuitive.



Autoencoder Models

Transformations in 
latent space

Directly decode the latent 
representation



Comparison to other approaches…
Amper Loss considers error in 
amplitudes and periods estimated from 
the predicted window (training 
converges faster)

Binary Cross Entropy (BCE) looks at 
window error only

PAW achieves higher accuracy compared to other AE and regressor 
methods

Window error is the sum of
red deltas. 



Performance on held-out stations

Relationship 
between the 

corrected 
windows and 

accuracy 



Low sensitivity to window error

Above 0.1s window error, 
we reach an accuracy 
plateau close to 80%!

0.1s is equivalent to 4 
samples in the entire 

window

Window error is the sum of
red deltas. 



Ablation Study



PAW is Unbiased to Depth, Magnitude and Distance



Outline

• Background
• Seismic waves, Seismometer network, Seismographs

• Seismic Data Processing Pipeline
• Single Seismometer to an Array to a Network to a human readable Bulletin

• Seismic Data Collection
• Data Sources

• Data Science Problems and Corresponding Seismology Applications 
• Semi-supervised Motif discovery: Seismic Signal Detection
• Classification: Seismic Phase Classification
• Regression: Depth Estimation
• Clustering: Seismic Phase Association
• Amplitude and Period Detection: Magnitude Calculation
• Similarity Search: Aftershock Detection



Introduction -- Online event detection 
• Motivation:

• Seismic monitoring systems 
• Not fully automated 
• Human analysts to confirm

• Aftershocks:
• Not interesting
• Increase analyst workload by 10x

• Solutions:
• More analysts:   Redundant
• Delay reporting: Vulnerability
• A real-time automated aftershock detector.   
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Challenges

• An unseen event: different data distribution.
• Only first few events are available.
• Computational efficiency is required for real-time performance.
• Concept drift. 
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FewSig
• Highlights:

• Trained on a few positive samples.
• Adapt to the new positive instances iteratively.
• Efficiently enough for real-time usage.
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FewSig Offline supervised 
classification model

Offline semi-
supervised model

Few positive signals

Concept drift

Real-time

Invariant to orders



Distance computation

Sliding

0% Correlation 

80.84% Correlation

89.85% Correlation

DTW

• Sliding DTW
• Sub-sequence search with DTW
• Reduce two types of errors:

• Misalignment error. 
• Warping error.

• Parameters:
• Sub-sequence length
• Search-range
• Warping band

• Learning strategies:
• Minimize intra-class distance
• Maximize inter-class distance



Initial Stage
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M 7.8 - 67 km NNE of Bharatpur, Nepal
•2015-04-25 06:11:25 (UTC)
•28.231°N 84.731°E



How FewSig works
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FewSig: Online Few-Shot Time Series Classification

General 
Classifier

Selective 
Model

𝐜$ Training 
Set

Initial
Labeled

Set

𝐜%

final label 
%𝒚 = 𝐜(
add to 

training 
set

final label 
%𝒚 = 𝐜)retrain

The same one 𝐜%

General 
Classifier

General 
Classifier

Selective 
Model

final label 
%𝒚 = 𝐜(

Selective 
Model

retrain



FewSig Sanity-check
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FewSig: Online Few-Shot Time Series Classification

● Other semi-supervised model 
modified for online version:
○ Wei’s Algorithm
○ DTWD
○ SUCCESS - SOTA
○ SSTSC – SOTA

● We tested on 68 univariate 
time series datasets from the 
UEA/UCR repository that 
covers various domains.

Critical difference diagram of 5 models, 
the ranking is based the average F1 score 
of 30 trials of experiments.

F1 scores of 68 datasets comparison 
between FewSig and Wei's model 
(left) and SSTSC (right).



Nepal aftershocks on MKAR

- Left figure shows the geographical distribution of origins for valid arrivals at MKAR. 
- The right figure shows some example waveforms for aftershocks and non-aftershocks 

from L and O. The first 5 aftershocks are in red. The BHZ waveforms recorded at MKAR 
are shown. They were filtered with a 0.4Hz to 10Hz Butterworth bandpass filter.



Results for 2015 Nepal Earthquake

Online performance for classifying Nepal aftershock sequence at MKAR. TPR, FPR, and F1 scores of 
different models are shown on the solid or dotted curves. A point on a curve shows the score when 
testing the events at and before the time on the x-axis. The accumulated number of testing aftershocks 
and non-aftershocks are represented by the light green and blue shaded areas respectively. Both 
SUCCESS_OL and SSTSC_OL have F1 scores of zero throughout. We only use Z channel time series 
data for SSTSC_OL since it only supports univariate time series.
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Thank you!


