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A Seismometer
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Vertical channel seismometer
The heavy mass stays in the same place while the rest of the assembly vibrates as the ground vibrates.



An Array/Network of Seismometers
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Bighorn Arch Seismic Experiment (BASE) broadband stations in

Wyoming and Montana region
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Distribution of Global Seismographic Network (GSN) stations.
USGS GSN sites are shown in blue and IRIS/IDA stations are shown in green.
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— ; - ; - — : 3 ’ Mom'toring the A\ earthquake, a nuclear test,
. ! and a mine collapse all cause
seismic disturbances that are recorded

worldfor ¢landestine monitoring stations around the world.

However, these three types of events

o C Satellite 4 produce very different ground motions at

. Atmosphéric J . . 2 . " signal ‘ nuclear tests re qu ires ll_mcir source. Eunhqtlakc:s" are caused hy
~ explosions . sideways slippage on a fault plane, while
x g . : underground nuclear explosions push
-

'accurateforensic outward in all directions. A mine collapse

is a massive vertical roof fall.

Lawrence Livermore is at the forefront
/ seismology tools. of research to more ?CCllralcly dislinguish
. A . nuclear explosions from the rest of
’ : ; ; Earth’s never-ending seismic activity,
: including earthquakes large and small,
. .« 4 . . volcanoes, and waves crashing on shore.
The Laboratory’s work was unexpectedly
put to the test following the August 2007
collapse of the Crandall Canyon coal
mine in Utah, which killed six miners.
Ten days later, another collapse killed
three rescue workers. Both events were
recorded on the local network of seismic
stations operated by the U.S. Geological
Survey (USGS) as well as on the USArray
stations, which are part of EarthScope, a
program funded by the National Science
Foundation. There was considerable
contention about whether the initial
magnitude-3.9 event was caused by an
earthquake or a collapse.

At the time, Livermore seismologists
were working with colleagues from the
University of California at Berkeley
on a waveform-matching technique to
distinguish among nuclear explosions,
Mine collapse earthquakes, and collapse events. This
and rock bursts technique compares seismograms produced

by computer modeling with recorded
data at local to regional distances (from

Volcanoes

Hydroacoustic sensors

" i 0 to 1,500 kilometers) for periods of 5 to

. N 50 seconds. Livermore’s analysis of the

. This cutaway view through Earth's subsurface August 2007 seismograms pointed to a

@ infrasound waves g shows many of the disturbances recorded by collapse rather than an earthquake. The
sensors worldwide. important result for the Laboratory team

@ seismic waves
. A
Lawrence Livermore National Laboratory - B ; . ' Lawrence Livermore National Laboratory




Seismic Waves

* Body waves (Linear particle motion)
P wave — longitudinal wave
* S wave — transverse wave
e Surface waves (non-linear particle motion)
* Rayleigh wave
* Love wave

© Science Learning Hub - Pokapu Akoranga Putaiao, University of Waikato, www.sciencelearn.org.nz

P wave
expansions

S Wave

compressions




Earthquake epicenter Key

Wave propagation AN, B

* Seismic waves reflect
and refract

>—wave S-wave
| :
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Seismic station records
both P and S waves

j

Seismic station records
no P or S waves

* There are shadow
zones where some
waves cannot reach

- 105°

e Speed of these waves
varies depending on
the media

S- ne Seismic station records
Wave shadow 2° P waves only

Copyright © 2005 Pearson Prentice Hall, Inc.



Where do earthquakes happen?
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NEIC events (‘14,/17,18) are red dots.



How many earthqguakes do happen?

Strong events are easy to notice, and
easy to detect.

Weaker events are rarely noticed, hard
to detect, and often uncatalogued.
Low magnitude events are frequent
and potentially informative to
prediction, classification and
localization tasks.
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Need

S-wave
patterns

0%

S-wave shadow zone

https://www.norsar.no

Mantle

To produce early warning for damage mitigation

To enforce Comprehensive Nuclear-Test-Ban Treaty (CTBT)

To understand earth structure and predict large magnitude events

To understand the effect of human induced seismicity

Epi-centre
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P-wave
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P-waves that passed through the core

Physical Geology, by Steven Earle

Usgs.gov

A) Hydraulic Fracturing of a
Production Well

SEALING LAYER
PRODUCTION FORMATION

CRYSTALLINE BASEMENT

—>
Following
hydraulic

fracturing,

production
begins

(extraction)

B) Oil Production

SEALING LAYER
PRODUCTION FORMATION

CRYSTALLINE BASEMENT

C) Oil Production and Wastewater Disposal
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Seismic Data Processing Pipeline
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Seismic Data Collection

e Event data from an already produced bulletin

* Generally queried by ranges of time and location of events
* All regional networks distribute bulletin: SCEDC, NCEDC, UU, NEIC

 Waveform data at a station
* Generally queried by range of time
e https://service.iris.edu/fdsnws/dataselect/1/

* Real-time data at a station
* No query
e https://ds.iris.edu/ds/nodes/dmc/services/seedlink/



https://service.iris.edu/fdsnws/dataselect/1/
https://ds.iris.edu/ds/nodes/dmc/services/seedlink/

Key Challenges

Real-time Data Processing
e 40Hz-100Hz data rate
e Large network with many stations

Machine learning
* Planet scale learning
* Lack of ground truth!
* Location sensitivity
* heterogeneity in sensors and networks

Constrained processing in defense applications
e Single station
* Far from the Event

Monitoring Challenges

* No or few human involvement
* Variable system load



Outline

* Data Science Problems and Corresponding Seismology Applications
* Semi-supervised Motif discovery: Seismic Signal Detection

Classification: Seismic Phase Classification

Regression: Depth Estimation

Clustering: Seismic Phase Association

Amplitude and Period Detection: Magnitude Calculation

Similarity Search: Aftershock Detection



Automated Seismic Signal Detection

'
Sample rate b 2 —.-I

——
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The Problem: Given a long seismograph, spot the low magnitude seismic events.



Signal Processing Technique
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Auto-correlation Technique

High correlation indicates identical dynamics at the source(s).

MISMATCH MATCH

[§.1 1

One parameter, high accuracy, time consuming.

An autocorrelation method to detect low frequency earthquakes within tremor, J.R. Brown, G.C. Beroza, and D.R. Shelly,,
Geophysical Research Letters, 2008
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Semi-supervised Technique

300

200

100

0

-100

-200

-300

-400
80
60
40
20

O b " Lad

-20

-2000

300 500 200

250 150

200

150 0 100

100 50

500 0
0 -50

-500 -50

100 -10

-150 -15

O
TN O
N[ A NCSN stations
0 % Mainshock My 4.1

[ | | e Catalog earthquakes (detected) \,\/
e Catalog earthquakes (missed)

Catalog Events

1000 200 FAST Events

15 150

10 100

5 50

0 0

-5 -50

10 -10(

15 -150

January 15, 2015

0

Januar\]8, 2015

30
20
10

-20
-30

L,
12
x106

30
20
10
0

-10

-20

-80 30

SeiSMo Events

-30

20

m
2000

1500

1000

@
=}
1S3

Elevation



e If supportis high enough report all nodes on the

SeiSMo: Semi-supervised Motif Discovery

® NearestNeighbor Graph (NNG)

* Create NNG
* Find sinks Set of
« Count support of each sink ® Discovered

. . Events
paths from any given node to the sink Catalog Events

21




SeiSMo on OK
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Novel Events

4 SeiSMo 8 3‘
\ (39) / \ SeiSMo
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6
Oklahoma California

SeiSMo has detected novel events that existing methods missed.

23



Performance
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SeiSMo can process hours long seismographs in seconds.
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Phase Classification

* The Problem: Identify the phase in given
waveforms from a three-component station

BH N with vertical, north-south, east-west
channels at the arrival time.
o BHE  We consider only 3-C stations without any
corroboration with other stations in the

arrays.

' WMM/\AMMMM "
T -4

* New monitoring stations are unlikely to be
arrays and more likely to be uncalibrated 3-
C stations.



Seismic Phases ;

* Six phases: P, Pg,
Pn, S, Sn, Lg
* We consider the

final phase that ’
arrived at a > 2 N I

50

40

station, ignoring V
path. For

example, pPcP is ’
considered as P.

IASP91 Travel Times
Surface Focus

Observed at high-frequency

0 30 60 90 120 150 180
Havskov J., Ottemoller L. (2010) Earth Structure and Seismic Phases. In: Routine Data Processing in Earthquake Seismology. Springer, Dordrecht Divincs iegmes)

USGS.gov



Log Scale

Phase Distributions
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Continuous Wavelet Transform
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Transverse

Longitudinal
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https://lvdmaaten.github.io/tsne/

Input
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FASER: A Deep Neural Network for Seismic Phase Classification
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Comparison to other ML Classitiers

XGBoost

MLP

CNN

LSTM
CNN-Bi-LSTM
FASER

Precision

63.4
76.2
75.2
75.7
31.3
384.6

Recall

67.2
75.6
75.2
74.3
30.2
381.6

67.2
/5.3
75.2

75
80.7
33.1

F1-Score Accuracy

67.2
75.6
75.2
75.3
381.5
32.8



Model Performance on Held-out IMS Stations

Accuracy




Model Performance on Held-out Source Regions
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Average accuracy is 0.7727 with standard deviation 0.0413
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* Data Science Problems and Corresponding Seismology Applications

Regression: Depth Estimation

Clustering: Seismic Phase Association

Amplitude and Period Detection: Magnitude Calculation
Similarity Search: Aftershock Detection



Motivation

* Seismic depth helps us separate natural vs man-made seismic activity
* Current depth estimation is deterministic and requires high quality data

* The Problem: Predict depth of a seismic event given waveforms at various
stations

Challenges

* Recording station should be right above the
hypocenter

* Lack of accurate training data

* Multiple reference points for ground truth

[1] redsismica.uprm.edu 37
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Preprocessing

Filtering (0.5-10 Hz)

Down sample (40 samples/sec)

Zero mean, min-max normalization
Convert to ZRT components
Continuous Wavelet Transform (CWT)

2001-07-03T11:40:24.9618 - 2001-07-03T11:44:24.9618

000000 i PLM. _BHZ

000000 i PLM._BHE
ooooo g
ooooo g
o]
000000 g
ooooooo
000000
2001-07-03T11:41:00 11:a2:00 11:43:00 11:44:00
2001-07-03T11:40:34.9618 - 2001-07-03T11:44:24.9868
CiPLM. _BH=
- )
T
4 (&P Bar
_—y
T
i PLM_ BT
o.0oocos
o.coocoa -
o.coooc0 bk
—o0.0o00c04a
—o.cooos
—o.0coco012 -

2001-07-03T11:41:00 11:42:00 11:a43:00 11:44:00

50

0 200 400 600 800



Septor model

| CWT1 el Waveform Aggregator 1

_ CWT 2 el  \\/aveform Aggregator

TR  \Waveform Aggregator Station Aggregator —— Depth
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= ip

_ CWT5 m—— \\/aveform Aggregator

Distance preserved ordering

40



Waveform aggregator
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Station aggregator

Batch normalization
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Experimental Setup

 Comparison with physics-driven methods

 Comparison with state-of-the-art data-
driven methods

* Performance of Septor as binary classifier
* Experiment on transferability across region



Results

Num of train event: 7524
Num of test event: 835
e Correlation: 70.1%
.
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[1] Holt et al. 2019

10 15
Actual Depth (km)

Correlation: - 5.36%

Num of event: 471

Depth (km)

Baseline 1]

Septor outperforms
physics-informed features
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Results (cont.)

Model Data resolution RMSE (km) Corr. (%)

CNN Multi-channel 3.26 56.0
LSTM Multi-channel 3.38 52.0
XGBoost Single-channel 3.93 37.0
XGBoost Multi-channel 3.58 36.0
XGBoost  Multi-station 3.39 44.3
Rocket Single-channel 3:11 46.2
Rocket Multi-channel 3.12 46.0
Rocket Multi-station 3.01 36.5
Septor Multi-station 2.89 70.1

Septor outperforms ML
based regressors




Performance of binary classifier
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Case study: Novel geographical region
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Earthquake Arrival/Phase Association

1
.

-

~
S

7 /7

\ S
__-\-«\-‘
[N

A Reciever
_-’ Raypath

T W WO S WO WL (PN S Wi % = Jw’* Mj“

2 S UL WS WA WG Jy g S e W g

o A W VT WA ] it M bk

2 A Sl 3 e el A

Z 4t i i Z 4L IVIAIANYY

S W A An A S —— Zh

B 2 e o AN W VA AR

n W podp . B e Code— ]
O O
0 100 Time () 200 300 O 100 Tre ) 200 300

The Problem: Given a set of phases at a set of stations, cluster/associate the phases such that no
station repeats in a cluster and the phases in a cluster obey physical travel-time laws.

lan W. McBrearty, Joan Gomberg, Andrew A. Delorey, Paul A. Johnson; Earthquake Arrival Association with Backprojection and Graph Theory. Bulletin of the Seismological Society of America 2019;; 109 (6): 2510-2531.
doi: https://doi.org/10.1785/0120190081



https://doi.org/10.1785/0120190081

Consider six sensors on a 2D plane

95)

Six sensors are on a 2D plane



Consider the signals observed at these sensors

» Time

4
=

S
A o

Observed Data — Each signal blip is a wave arrival
Six sensors are on a 2D plane at the sensor.



Where, when and how many events happened
to produce this data?

» Time

4
=

S
A o

Observed Data — Each signal blip is a wave arrival
Assuming uniform wave propagation speed. at the sensor.



Let us try an example E;

A
Ss
A
E;(ty, Laty, Lony)
S
5 A
A

Assuming uniform wave propagation speed.

» Time
S1 observes E; (or E;arrives at S;)
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E; happened at this time



Let us try an example E;

g

A
Ss
A
E]_ (tll Latl, L()nl)
S4
Sy A
A

Assuming uniform wave propagation speed.
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Let us try an example E;

A
Ss
A
E;(ty, Laty, Lony)
S
S, A
A

Assuming uniform wave propagation speed.
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Let us try an example E;

> Time
Sl E
A S2 | W
S, |
A i
Ss S3 :
N —
e E
E;(tq, Latq, Lony) i
S 5 Sc observes
Sz A : / 5
A ! m too late
55 :
S6
A i
S3 :
»*
We can prove that one event cannot produce
this data by solving a system of linear \

equations to find no real root. E; happened at this time



Let us try two example events E; and E,

tl ' tz

s,
§ — i
A S, i
5 —

» Time

A
55 S3
A
El(tl,Latl,LOnl)
Sa
Sa
A 5,
Se
A Ez(tz,Latz,LOle) i \/W\
S3 é
L — . 4
These two events show a plausible explanations of the observed \ E; happened at this time

data. However, we assume that E; does not reach beyond Sg and

E, does not reach beyond Ss. E; happened at this time



What happens when E; reaches 5S¢ ?

Se

51
A

Ss

A

E1 (tl' Latl, LOnl)
Sz

A

A sensor observes multiple events.

A

Ez (tz, Latz, Lonz)

» Time

MW

]

I

Ui

* “— E, happened at this time

\

E; happened at this time



What happens when E; generates multiple
phases?

tq t -
> Time
S1 MW‘ A The time differences

Se \ ,!\ between two phases of

A Sz | it~ the same event are
51 \IMI\ \/W identical
A i '

Ss S3 !
A
E;(tq, Latq, Lony) s,

Sa
S, A

: : oo
A Ez (tz, Latz, Lonz) S6 E \/W\ \/W\

S3 :
)

“— E, happened at this time

A sensor observes the same event multiple times based on the \ o
: : E; happened at this time
distance and dynamics of the event.



Spurious signals are observed at random time

and location...

A
Ss
A
E]_ (tl' Latl, LOnl)
S
S A '
2
A

A Ez(tz,Latz,LOle)

S3

A sensor observes the same event multiple times based on the

distance and dynamics of the event.

» Time

=

+ Spurious Signal

W\F VWLJV"'
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M=l

* “— E, happened at this time

\

E; happened at this time



ML attempts to solve this problem

Cartesian product graph
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Figure 2. Schematic of the GNN model's input and output. On the upper left
are input station and spatial graphs, and on the lower left a window of input
pick times. This input is mapped through the GNN to provide a spatial and
temporal prediction of the source likelihood (represented as spacetime
Gaussians), and individual source-arrival association likelihoods for each
pick. Out of the large number of picks within the input pick window, the
GNN s trained to identify only the small subset of P (top right) and S
(bottom right) picks that are associated to the true source, as marked in red
in the spatial heat map. On the right-side panels, the yellow arrivals are the
true P- and S-wave arrivals, whereas all other picks are false. The color
version of this figure is available only in the electronic edition.
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lan W. McBrearty, Gregory C. Beroza; Earthquake Pha;‘é‘Alzs)sociation with Graph Neural Networks. Bulletin of the Seismological Society of America 2023;; 113 (2): 524-547. doi: https://doi.org/lrafﬁ)SS/0120220182



Challenges

 The number of earthquake events (and their locations) are unknown.

* Many observations/arrivals can be false, with uncertain pick times.

* Multiple earthquakes can occur nearby in time and space.

* Dozens or hundreds of stations must be processed.

» Station/sensor coverage and event distribution are highly heterogeneous.

* Most events are small and only observed on a small subset of stations/sensors.

e Sensors on earth are assumed to be on the surface of a sphere instead of the 2D plane in these examples.

e Rare but possible challenges:
» Sensors are not always operational.
e Sensors may change locations.



Outline

* Data Science Problems and Corresponding Seismology Applications

* Amplitude and Period Detection: Magnitude Calculation
* Similarity Search: Aftershock Detection



Amplitude Window
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The period and amplitude are
measured at the largest,
uninterrupted half-cycle in the
seismograph.

The Problem: Find the largest
uninterrupted half-cycle in the
waveform.



ARA Labeled Dataset

Derived ‘ground-truth’ labeled
metadata from EVAL1 bulletin

Extracted matching signal windows
from International Data Center (IDC)
2017 — 2018 continuous waveform
data.

o

Final AM-P Dataset -

Metadata Filtering Criteria

Total arrival IDs 5,912,699

Arrivals with P or Pn phase label from 525,605
preferred origins in 2017 or 2018

Arrivals with specified filtering 197,670
parameters
AMP-Per window in signal window 175,481

51,800 BHZ time windows (3-C stations)

123,681 SHZ time windows (array beams)
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Examples...

1.01 1.0 -
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Time (s) Time (s)

Some examples clearly shows a half-cycle ...



Examples...
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... and some are not intuitive.
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Autoencoder Models

Directly decode the latent
representation

Transformations in
latent space
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Comparison to other approaches...

80 BCE Loss | =
—— Amper Loss £
a70 ) - 2 o
L 65 o e e
> % % ? Automated System
< 60 ° o
DOk -
50 5
R R SR
N
& & & &S &

PAW achieves higher accuracy compared to other AE and regressor

methods

Amper Loss considers error in

amplitudes and periods estimated from
the predicted window (training
converges faster)

Binary Cross Entropy (BCE) looks at
window error only

-

B T

P

Window error is the sum of
red deltas.



Performance on held-out stations

~ Corrected Windows Non-Corrected Windows ]
90 -
60 -
30- Relationship
. between the
S o corrected
7 windows and
aCcuracy
_30 -
_60 -
B 3C Stations ) Array Beam Points 3
STA BOSA CPUP DBIC LBTB LPAZ PLCA VNDA | ASAR BRTR CMAR ILAR KSRS MKAR PDAR TXAR

Adjusted  33.91% 36.36% 26.61% 25.44% 33.75% 25.00% 28.95% | 34.81%  32.97% 51.92% 37.11% 36.61% 34.42% 33.89% 33.01%
Accepted  66.09% 63.64% T73.39% T456% 66.25% T5.00% TL.O05% | 65.19%  67.03%  48.08%  62.80% 63.39% 65.58% 66.11%  66.99%
Proportion  1.74%  0.99% 1.24%  L14%  1.60%  1.68%  2.28% | 22.84% 4.64% 1017% 15.17%  4.89% 16.50%  T.82%  7.30%
WA T8.84% TLTT% 82.92% 81.55% 76.12% 80.67% T79.05% | 84.49% T76.05% 66.32% TT.04% 80.35% 81.17% T77.58% 79.93%




Low sensitivity to window error

Accuracy

80 -

o))
o
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121/‘/‘7
000 002 004 006 008 010 012 0.14

Window Error (s)
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Window error is the sum of
red deltas.

Above 0.1s window error,
we reach an accuracy

plateau close to 80%!

0.1s is equivalent to 4
samples in the entire
window



Ablation Study

PAW Model Components RMSE Window Accuracy
CNN AE LSTM Transformer Symmetry Window Amp Per(s) Mag Test Adj Acc
v 0.1537 0.0715 0.2158 0.3804 75.54% 71.05% 80.48%
v v4 0.1526 0.0699 0.2024 0.3783 76.83% 72.25%  80.14%
v v 0.1514 0.0694 0.2107 0.3792 76.04% 69.92% 82.19%
v v v 0.2712 0.2864 0.5386 1.0083 18.31% 14.43% 22.67%
v v v 0.1445 0.0683 0.1686 0.3573 79.84% 73.28% 87.28%
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PAW is Unbiased to Depth, Magnitude and Distance
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Outline

* Data Science Problems and Corresponding Seismology Applications

* Similarity Search: Aftershock Detection



Introduction -- Online event detection

29.397°N [ iR 48 =L

¢ MOtlvatlon + Aftershocks ‘
. . . . -‘*‘- Main shock
« Seismic monitoring systems e
* Not fully automated e I ‘

 Human analysts to confirm

 Aftershocks: 27.5879°N
* Not interesting
 Increase analyst workload by 10x

26.6834°N

 Solutions:
* More analysts: Redundant
» Delay reporting: Vulnerability
» Areal-time automated aftershock detector.

84.1206°E 85.9296°E 87.7387°E
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Challenges

e An unseen event: different data distribution.
* Only first few events are available.

 Computational efficiency is required for real-time performance.

i

- —e— Aftershocks
K -*- Main shock
. L ot =

' I

’ Concept drift' 16.7337°N 1 -
I ' |

14.0201°N|

13.1156°N

96.7839°W 94.9749°W 93.1658°W
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FewSig

* Highlights:
* Trained on a few positive samples.
» Adapt to the new positive instances iteratively.
« Efficiently enough for real-time usage.

Offline supervised Offline semi-
classification model supervised model

Few positive signals

g

Concept drift

Real-time

Invariant to orders

AN

Vv
X X



Distance computation

- Sliding DTW

e Sub-sequence search with DTW

e Reduce two types of errors: A ot o
* Misalignment error. |
* Warping error. F | | 0% Correlation
-0 i(; - 12_p0|n:0§hlft @ 4OHZ 1000 | | | | ;500 2000 ;500 SI id i ng

e Sub-sequence length
e Search-range
* Warping band

* Learning strategies:

* Minimize intra-class distance M\/WM DTW
* Maximize inter-class distance W\/V\/\M 29 85% Correlation
= . 0

WAL oA s ””’“’“’“"'"‘4'f‘\MﬁJMM\ I A AV e O 80.84% Correlation

|

0 500 1000 1500 2000




Initial Stage
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Collecting waveforms at an IMS seismometer

All the history non-aftershock waveforms at MKAR
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FewSig: Online Few-Shot Time Series Classification

How FewSig works

Illllllllllllc f :finallabelie

= final label * . :
General D y=ct b retrain General General : y=ct
Classifier * addto - Initial _> Classifier Classifier E iiessmsaa
E training E Labeled .
set Set *
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FewSig: Online Few-Shot Time Series Classification

FewSig Sanity-check

. _ 5 4 3 2 1
® Other semi-supervised model I - l . | ! | ! |
modified for online version: SSTSC_OL 41765 LI—' L6765 Fo Sig
O  Wei’s Algorithm SUCCESS_OL 22 2.705% \Wei's_OL
o DTWD 3209 DTWD_OL
O SUCCESS-SOTA Critical difference diagram of 5 models,
O  SSTSC - SOTA

the ranking is based the average F1 score

0.9 * . o 0.9 S . 8
° L4 . % . . ° . L4 .
0.8 ® . . 0.8 o L

® We tested on 68 univariate 5 7 o7 ,
time series datasets from the ‘g Lo <§° '
UEA/UCR repository that R o
covers various domains. 0:; N ":;’
U Newor U Yossascol

F1 scores of 68 datasets comparison




Nepal aftershocks on MKAR
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- Left figure shows the geographical distribution of origins for valid arrivals at MKAR.

- The right figure shows some example waveforms for aftershocks and non-aftershocks
from L and O. The first 5 aftershocks are in red. The BHZ waveforms recorded at MKAR
are shown. They were filtered with a 0.4Hz to 10Hz Butterworth bandpass filter.
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Results for 2015 Nepal Earthquake

Aftershock Acc Non_aftershock Acc. i e==FewSig TPR ¢« FewSig FPR
e=Wei's_OL «==SUCCESS_OL . .
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Online performance for classifying Nepal aftershock sequence at MKAR. TPR, FPR, and F1 scores of
different models are shown on the solid or dotted curves. A point on a curve shows the score when
testing the events at and before the time on the x-axis. The accumulated number of testing aftershocks
and non-aftershocks are represented by the light green and blue shaded areas respectively. Both
SUCCESS_OL and SSTSC_OL have F1 scores of zero throughout. We only use Z channel time series
data for SSTSC_OL since it only supports univariate time series.
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