Home
www-optima.amp.i.kyoto-u.ac.jp
A novel distributed genetic algorithm implementation with variable number of islands
The influence of migration sizes and intervals on island models
Empirical review of standard benchmark functions using evolutionary global optimization
Numerical Optimization of Computer Models
Evaluating evolutionary algorithms
This benchmark is listed as F7 in "The parallel genetic algorithm as function optimizer"
Schwefel
Two dimensional view![]() |
One dimensional view![]() |
Function

Latex
A minimization problem:
$$f(x_1 \cdots x_n) = \sum_{i=1}^n (-x_i sin(\sqrt{|x_i|})) + \alpha \cdot n$$
$$\alpha = 418.982887$$
$$-512 \leq x_i \leq 512$$
$$\text{minimum at }f(420.968746, 420.968746, \cdots, 420.968746) = 0$$
Python
def fitnessFunc(self, chromosome): """F7 Schwefel's function multimodal, asymmetric, separable""" alpha = 418.982887 fitness = 0 for i in range(len(chromosome)): fitness -= chromosome[i]*math.sin(math.sqrt(math.fabs(chromosome[i]))) return float(fitness) + alpha*len(chromosome)
Sources
The following may or may not contain the originator of this function.www-optima.amp.i.kyoto-u.ac.jp
A novel distributed genetic algorithm implementation with variable number of islands
@inproceedings{varIslandNum07, author = {Takuma Jumonji and Goutam Chakraborty and Hiroshi Mabuchi and Masafumi Matsuhara}, title = {A novel distributed genetic algorithm implementation with variable number of islands}, booktitle = {IEEE Congress on Evolutionary Computation}, year = {2007}, pages = {4698--4705}, doi = {10.1109/CEC.2007.4425088}, masid = {4737000} }
The influence of migration sizes and intervals on island models
@inproceedings{Skolicki:2005:IMS:1068009.1068219, author = {Skolicki, Zbigniew and De Jong, Kenneth}, title = {The influence of migration sizes and intervals on island models}, booktitle = {Proceedings of the 2005 conference on Genetic and evolutionary computation}, series = {GECCO '05}, year = {2005}, isbn = {1-59593-010-8}, location = {Washington DC, USA}, pages = {1295--1302}, numpages = {8}, url = {http://doi.acm.org/10.1145/1068009.1068219}, doi = {10.1145/1068009.1068219}, acmid = {1068219}, publisher = {ACM}, address = {New York, NY, USA}, keywords = {evolutionary computation, island model, migration, migration interval, migration size, test suite}, }
Empirical review of standard benchmark functions using evolutionary global optimization
@article{DBLP:journals/corr/abs-1207-4318, author = {Johannes M. Dieterich and Bernd Hartke}, title = {Empirical review of standard benchmark functions using evolutionary global optimization}, journal = {CoRR}, volume = {abs/1207.4318}, year = {2012}, ee = {http://arxiv.org/abs/1207.4318}, bibsource = {DBLP, http://dblp.uni-trier.de} }
Numerical Optimization of Computer Models
@book{Schwefel:1981:NOC:539468, author = {Schwefel, Hans-Paul}, title = {Numerical Optimization of Computer Models}, year = {1981}, isbn = {0471099880}, publisher = {John Wiley \& Sons, Inc.}, address = {New York, NY, USA}, }
Evaluating evolutionary algorithms
@article{Whitley1996245, title = "Evaluating evolutionary algorithms", journal = "Artificial Intelligence", volume = "85", number = "1-2", pages = "245 - 276", year = "1996", note = "", issn = "0004-3702", doi = "10.1016/0004-3702(95)00124-7", url = "http://www.sciencedirect.com/science/article/pii/0004370295001247", author = "Darrell Whitley and Soraya Rana and John Dzubera and Keith E. Mathias" }
This benchmark is listed as F7 in "The parallel genetic algorithm as function optimizer"
@article{Muhlenbein1991619, title = "The parallel genetic algorithm as function optimizer", journal = "Parallel Computing", volume = "17", number = "6-7", pages = "619 - 632", year = "1991", note = "", issn = "0167-8191", doi = "10.1016/S0167-8191(05)80052-3", url = "http://www.sciencedirect.com/science/article/pii/S0167819105800523", author = "H. M{\"u}hlenbein and M. Schomisch and J. Born", keywords = "Search methods", keywords = "optimization methods", keywords = "parallel genetic algorithm", keywords = "performance evaluation", keywords = "speedup results" }