
 1

Walter Maner

Is Computer Ethics Unique?

[An earlier version of this paper appeared in Science and Engineering Ethics,
volume 2, number 2 (April, 1996), pages 137-154. See
http://www.cableol.co.uk/opragen/ Used by permission.]

Introduction

One factor behind the rise of computer ethics is the lingering
suspicion that computer professionals may be unprepared to deal
effectively with the ethical issues that arise in their workplace. This
may be true, but the perceived need for remedial moral education
does not provide an adequate rationale for the study of computer
ethics. Rather, it must exist as a field worthy of study in its own right
and not because it can provide a useful means to certain socially
noble ends. To exist and to endure as a separate field, there must be
a unique domain for computer ethics distinct from the domain for
moral education, distinct even from the domains of other kinds of
professional and applied ethics. Like James Moor, I believe
computers are special technology and raise special ethical issues,
hence that computer ethics deserves special status.

My remaining remarks will suggest a rationale for computer ethics
based on arguments and examples showing that one of the following
is true:

that certain ethical issues are so transformed by the use of computers
that they deserve to be studied on their own, in their radically altered
form,

or

that the involvement of computers in human conduct can create
entirely new ethical issues, unique to computing, that do not surface in
other areas.

I shall refer to the first as the "weaker view" and the second as the

 2

"stronger view." Although the weaker view provides sufficient
rationale, most of my attention will be focused on establishing the
stronger view. This is similar to the position I took in 1980 and 1985,
except that I no longer believe that problems merely aggravated by
computer technology deserve special status.

Levels of justification for the study of computer ethics

From weaker to stronger, there are at least six levels of justification for
the study of computer ethics.

Level One

We should study computer ethics because doing so will make us
behave like responsible professionals.

At worst, this type of rationale is a disguised call for moral
indoctrination. At best, it is weakened by the need to rely on an elusive
connection between right knowledge and right conduct. This is similar
to the claim that we should study religion because that will cause us to
become more spiritual. For some people, perhaps it may, but the
mechanism is not reliable.

Level Two

We should study computer ethics because doing so will teach us
how to avoid computer abuse and catastrophes.

Reports by Parker, Neumann, Forester and Morrison leave little doubt
that computer use has led to significant abuse, hijinks, crime, near
catastrophes, and actual catastrophes. The question is: Do we get a
balanced view of social responsibility merely by examining the
profession’s dirty laundry? Granted, a litany of computer "horror
stories" does provide a vehicle for infusing some ethical content into
the study of computer science and computer engineering. Granted,
we should all work to prevent computer catastrophes. Even so, there
are major problems with the use of conceptual shock therapy:

 3

The cases commonly used raise issues of bad conduct rather than
good conduct. They tell us what behaviors to avoid but do not tell us
what behaviors are worth modeling.

As Leon Tabak has argued, this approach may harm students by
preventing them from developing a healthy, positive and constructive
view of their profession.

Most horror stories are admittedly rare and extreme cases, which
makes them seem correspondingly remote and irrelevant to daily
professional life.

Many computer catastrophes are the result of unintended actions
and, as such, offer little guidance in organizing purposive behavior.

A litany of horror stories does not itself provide a coherent concept of
computer ethics.

Level Three

We should study computer ethics because the advance of
computing technology will continue to create temporary policy
vacuums.

Long-term use of poorly designed computer keyboards, for example,
exposes clerical workers to painful, chronic, and eventually debilitating
repetitive stress injury. Clearly employers should not require workers
to use equipment that will likely cause them serious injury. The
question is: What policies should we formulate to address problems
of long-term keyboard use? New telephone technology for automatic
caller identification creates a similar policy vacuum. It is not
immediately obvious what the telephone company should be required
to do, if anything, to protect the privacy of callers who wish to remain
anonymous.

Unlike the first- and second-level justifications I have considered and
rejected, this third-level justification does appear to be sufficient to
establish computer ethics as an important and independent discipline.
Still, there are problems:

 4

Since policy vacuums are temporary and computer technologies
evolve rapidly, anyone who studies computer ethics would have the
perpetual task of tracking a fast-moving and ever-changing target.

It is also possible that practical ethical issues arise mainly when policy
frameworks clash. We could not resolve such issues merely by
formulating more policy.

Level Four

We should study computer ethics because the use of computing
permanently transforms certain ethical issues to the degree that
their alterations require independent study.

I would argue, for example, that many of the issues surrounding
intellectual property have been radically and permanently altered by
the intrusion of computer technology. The simple question, "What do I
own?" has been transformed into the question, "What exactly is it that I
own when I own something?" Likewise, the availability of cheap, fast,
painless, transparent encryption technology has completely
transformed the privacy debate. In the past, we worried about the
erosion of privacy. Now we also worry about the impenetrable wall of
computer-generated privacy afforded to every computer-literate
criminal.

Level Five

We should study computer ethics because the use of computing
technology creates, and will continue to create, novel ethical issues
that require special study. I will return to this topic in a moment.

Level Six

We should study computer ethics because the set of novel and
transformed issues is large enough and coherent enough to define
a new field.

I mention this hopefully as a theoretical possibility. Frankly, after twenty
years, we have not been able to assemble a critical mass of self-
defining core issues.

 5

The special status of computer ethics

I now turn to the task of justifying computer ethics at Level 5 by
establishing, through several examples, that there are issues and
problems unique to the field.

It is necessary to begin with a few disclaimers. First, I do not claim that
this set of examples is in any sense complete or representative. I do
not even claim that the kinds of examples I will use are the best kind of
examples to use in computer ethics. I do not claim that any of these
issues is central to computer ethics. Nor am I suggesting that
computer ethics should be limited to just those issues and problems
that are unique to the field. I merely want to claim that each example
is, in a specific sense, unique to computer ethics.

By "unique" I mean to refer to those ethical issues and problems that

are characterized by the primary and essential involvement of
computer technology,

exploit some unique property of that technology, and

would not have arisen without the essential involvement of computing
technology

I mean to allow room to make either a strong or a weak claim as
appropriate. For some examples, I make the strong claim that the
issue or problem would not have arisen at all. For other examples, I
claim only that the issue or problem would not have arisen in its
present, highly altered form.

To establish the essential involvement of computing technology, I will
argue that these issues and problems have no satisfactory non-
computer moral analog. For my purposes, a "satisfactory" analogy is
one that (a) is based on the use of a machine other than a computing
machine and (b) allows the ready transfer of moral intuitions from the
analog case to the case in question. In broad strokes, my line of
argument will be that certain issues and problems are unique to

 6

computer ethics because they raise ethical questions that depend on
some unique property of prevailing computer technology. My remarks
are meant to apply to discrete-state stored-program inter-networking
fixed-instruction-set serial machines of von Neumann architecture. It is
possible that other designs (such as the Connection Machine) would
exhibit a different set of unique properties.

Next I offer a series of examples, starting with a simple case that
allows me to illustrate my general approach.

EXAMPLE 1: Uniquely Stored

One of the unique properties of computers is that they must store
integers in "words" of a fixed size. Because of this restriction, the
largest integer that can be stored in a 16-bit computer word is 32,767.
If we insist on an exact representation of a number larger than this, an
"overflow" will occur with the result that the value stored in the word
becomes corrupted. This can produce interesting and harmful
consequences. For example, a hospital computer system in
Washington, D.C., broke down on September 19, 1989, because its
calendar calculations counted the days elapsed since January 1,
1900. On the 19th of September, exactly 32,768 days had elapsed,
overflowing the 16-bit word used to store the counter, resulting in a
collapse of the entire system and forcing a lengthy period of manual
operation.

Does this case have a satisfactory non-computer analog? Consider
an automobile’s mechanical odometer gauge. When the odometer
reading exceeds a designed-in limit, say 99,999.9 kilometers, the
gauge overflows and returns to all zeros. This is a non-computer
analogy, but not a satisfactory one. Perhaps it would be satisfactory if,
when the odometer overflowed, the engine, the brakes, the wheels,
and every other part of the automobile stopped working. This does not
in fact happen because the odometer is not highly coupled to other
systems critical to the operation of the vehicle. What is different about
computer words is that they are deeply embedded in highly integrated
subsystems such that the corruption of a single word threatens to
bring down the operation of the entire computer. What we require, but
do not have, is a non-computer analog that has a similar catastrophic
failure mode.

 7

So the incident at the hospital in Washington, D.C. meets my three
basic requirements for a unique issue or problem. It is characterized
by the primary and essential involvement of computer technology, it
depends on some unique property of that technology, and it would not
have arisen without the essential involvement of computing
technology.

EXAMPLE 2: Uniquely Malleable

Another unique characteristic of computing machines is that they are
very general-purpose machines. As James Moor observed, they are
"logically malleable" in the sense that "they can be shaped and
molded to do any activity that can be characterized in terms of inputs,
outputs, and connecting logical operations."

The unique adaptability and versatility of computers have important
moral implications. Since computers do not care how they get their
input, there is nothing to prevent a paraplegic from using a head-
controlled pointing device to send information to a computer. On
Kantian grounds, we have a clear duty to modify standard input
devices to solve accessibility problems, but what makes this duty so
reasonable and compelling is the fact that computers are so easily
adapted to user requirements.

Does there exist any other machine that forces an analogous
obligation on us to assist people with disabilities? I do not believe so.
The situation would be different, for example, if a paraplegic wanted to
ride a bicycle. While it is true that bicycles have numerous
adjustments to accommodate the varying geometry of different riders,
they are infinitely less adaptable than computers. For one thing,
bicycles cannot be programmed, and they do not have operating
systems. My point is that our obligation to provide universal
accessibility to computer technology would not have arisen if
computers were not universally adaptable. The generality of the
obligation is in proportion to the generality of the machine.

EXAMPLE 3: Uniquely Complex

Another unique property of computer technology is its superhuman
complexity. It is true that humans program computing machines, so in

 8

that sense we are masters of the machine. The problem is that our
programming tools allow us to create discrete functions of arbitrary
complexity. In many cases, the result is a program whose total
behavior cannot be described by any compact function. Buggy
programs in particular are notorious for evading compact description!
The fact is we routinely produce programs whose behavior defies
inspection, defies understanding -- programs that surprise, delight,
entertain, frustrate and ultimately confound us. Even when we
understand program code in its static form, it does not follow that we
understand how the program works when it executes.

James Moor provides a case in point:

An interesting example of such a complex calculation occurred in
1976 when a computer worked on the four color conjecture. The four
color problem, a puzzle mathematicians have worked on for over a
century, is to show that a map can be colored with at most four colors
so that no adjacent areas have the same color. Mathematicians at the
University of Illinois broke the problem down into thousands of cases
and programmed computers to consider them. After more than a
thousand hours of computer time on various computers, the four color
conjecture was proved correct. What is interesting about this
mathematical proof, compared to traditional proofs, is that it is largely
invisible. The general structure of the proof is known and found in the
program, and any particular part of the computer’s activity can be
examined, but practically speaking the calculations are too enormous
for humans to examine them all.

It is true that airplanes, as they existed before computers, were
complex and that they presented behaviors that were difficult to
understand. But aeronautical engineers do understand how airplanes
work because airplanes are constructed according to known
principles of physics. There are mathematical functions describing
such forces as thrust and lift, and these forces behave according to
physical laws. There are no corresponding laws governing the
construction of computer software.

This lack of governing law is unique among all the machines that we
commonly use, and this deficiency creates unique obligations.
Specifically, it places special responsibilities on software engineers

 9

for the thorough testing and validation of program behavior. There is, I
would argue, a moral imperative to discover better testing
methodologies and better mechanisms for proving programs correct.
It is hard to overstate the enormity of this challenge. Testing a simple
input routine that accepts a 20-character name, a 20-character
address, and a 10-digit phone number would require approximately
1066 test cases to exhaust all possibilities. If Noah had been a
software engineer and had started testing this routine the moment he
stepped off the ark, he would be less than one percent finished today
even if he managed to run a trillion test cases every second. In
practice, software engineers test a few boundary values and, for all
the others, they use values believed to be representative of various
equivalence sets defined on the domain.

EXAMPLE 4: Uniquely Fast

On Thursday, September 11, 1986, the Dow Jones industrial average
dropped 86.61 points, to 1792.89, on a record volume of 237.6 million
shares. On the following day, the Dow fell 34.17 additional points on a
volume of 240.5 million shares. Three months later, an article
appearing in Discover magazine asked: Did computers make stock
prices plummet? According to the article,

... many analysts believe that the drop was accelerated (though not
initiated) by computer-assisted arbitrage. Arbitrageurs capitalize on
what’s known as the spread: a short-term difference between the
price of stock futures, which are contracts to buy stocks at a set time
and price, and that of the underlying stocks. The arbitrageurs’
computers constantly monitor the spread and let them know when it’s
large enough so that they can transfer their holdings from stocks to
stock futures or vice-versa, and make a profit that more than covers
the cost of the transaction. ... With computers, arbitrageurs are
constantly aware of where a profit can be made. However, throngs of
arbitrageurs working with the latest information can set up
perturbations in the market. Because arbitrageurs are all "massaging"
the same basic information, a profitable spread is likely to show up on
many of their computers at once. And since arbitrageurs take
advantage of small spreads, they must deal in great volume to make it
worth their while. All this adds up to a lot of trading in a little time,
which can markedly alter the price of a stock.

 10

After a while, regular investors begin to notice that the arbitrageurs
are bringing down the value of all stocks, so they begin to sell too.
Selling begets selling begets more selling.

According to the chair of the NYSE, computerized trading seems to
be a stabilizing influence only when markets are relatively quiet. When
the market is unsettled, programmed trading amplifies and
accelerates the changes already underway, perhaps as much as
20%. Today the problem is arbitrage but, in the future, it is possible
that ordinary investors will destabilize the market. This could
conceivably happen because most investors will use the same type of
computerized stock trading programs driven by very similar
algorithms that predict nearly identical buy/sell points.

The question is, could these destabilizing effects occur in a world
without computers? Arbitrage, after all, relies only on elementary
mathematics. All the necessary calculations could be done on a
scratch pad by any one of us. The problem is that, by the time we
finished doing the necessary arithmetic for the stocks in our
investment portfolio, the price of futures and the price of stocks would
have changed. The opportunity that had existed would be gone.

EXAMPLE 5: Uniquely Cheap

Because computers can perform millions of computations each
second, the cost of an individual calculation approaches zero. This
unique property of computers leads to interesting consequences in
ethics.

Suppose my job is to program the computers that manage bank
accounts. I could write the program so that it moves a tiny amount from
every account into an account I own. I could make the amount so small
that it would fall beneath the account owner’s threshold of concern.
Even if I steal only half a cent each month from each of 100,000 bank
accounts, I stand to pocket $6000 over a year’s time. There are at
least three factors that make this "bit shaving" or "salami slicing"
scheme unusual. First, individual computer computations are now so
cheap that the cost of moving a half-cent from one account to another
is vastly less than half a cent. For all practical purposes, the
calculation is free. So there can be tangible profit in moving amounts

 11

that are vanishingly small if the volume of such transactions is
sufficiently high. Second, once the plan has been implemented, it
requires no further attention. It is fully automatic. Finally, from a
practical standpoint, no one is ever deprived of anything in which they
have a significant interest. In short, we seem to have invented a kind
of stealing that requires no taking -- or at least no taking of anything
that would be of significant value or concern. It is theft by diminishing
return.

EXAMPLE 6: Uniquely Cloned

Perhaps for the first time in history, computers give us the power to
make an exact copy of some artifact. If I make a verified copy of a
computer file, the copy can be proven to be bit for bit identical to the
original. Common disk utilities like diff can easily make the necessary
bitwise comparisons. It is true that there may be some low-level
physical differences due to track placement, sector size, cluster size,
word size, blocking factors, and so on. But at a logical level, the copy
will be perfect. Reading either the original or its copy will result in the
exact same sequence of bytes. For all practical purposes, the copy is
indistinguishable from the original. In any situation where we had used
the original, we can now substitute our perfect copy, or vice versa. We
can make any number of verified copies of our copy, and the final
result will be logically identical to the first original.

This makes it possible for someone to "steal" software without
depriving the original owner in any way. The thief gets a copy that is
perfectly usable. He would be no better off even if he had the original
file. Meanwhile the owner has not been dispossessed of any property.
Both files are equally functional, equally useful. There was no transfer
of possession.

Sometimes we do not take adequate note of the special nature of this
kind of crime. For example, the Assistant VP for Academic
Computing at Brown University reportedly said that "software piracy is
morally wrong -- indeed, it is ethically indistinguishable from shoplifting
or theft." This is mistaken. It is not like piracy. It is not like shoplifting or
simple theft. It makes a moral difference whether or not people are
deprived of property. Consider how different the situation would be if
the process of copying a file automatically destroyed the original.

 12

Electrostatic copying may seem to provide a non-computer analog,
but Xerox™ copies are not perfect. Regardless of the quality of the
optics, regardless of the resolution of the process, regardless of the
purity of the toner, electrostatic copies are not identical to the
originals. Fifth- and sixth-generation copies are easily distinguished
from first- and second-generation copies. If we "steal" an image by
making a photocopy, it will be useful for some purposes but we do not
thereby acquire the full benefits afforded by the original.

EXAMPLE 7: Uniquely Discrete

In a stimulating paper "On the Cruelty of Really Teaching Computer
Science,"Edsger Dijkstra examines the implications of one central,
controlling assumption: that computers are radically novel in the
history of the world. Given this assumption, it follows that
programming these unique machines will be radically different from
other practical intellectual activities. This, Dijkstra believes, is
because the assumption of continuity we make about the behavior of
most materials and artifacts does not hold for computer systems. For
most things, small changes lead to small effects, larger changes to
proportionately larger effects. If I nudge the accelerator pedal a little
closer to the floor, the vehicle moves a little faster. If I press the pedal
hard to the floor, it moves a lot faster. As machines go, computers are
very different.

A program is, as a mechanism, totally different from all the familiar
analogue devices we grew up with. Like all digitally encoded
information, it has, unavoidably, the uncomfortable property that the
smallest possible perturbations -- i.e., changes of a single bit -- can
have the most drastic consequences.

This essential and unique property of digital computers leads to a
specific set of problems that gives rise to a unique ethical difficulty, at
least for those who espouse a consequentialist view of ethics.

For an example of the kind of problem where small "perturbations"
have drastic consequences, consider the Mariner 18 mission, where
the absence of the single word NOT from one line of a large program
caused an abort. In a similar case, it was a missing hyphen in the
guidance program for an Atlas-Agena rocket that made it necessary

 13

for controllers to destroy a Venus probe worth $18.5 million. It was a
single character omitted from a reconfiguration command that caused
the Soviet Phobos 1 Mars probe to tumble helplessly in space. I am
not suggesting that rockets rarely failed before they were
computerized. I assume the opposite is true, that in the past they were
far more susceptible to certain classes of failure than they are today.
This does not mean that the German V-2 rocket, for example, can
provide a satisfactory non-computer (or pre-computer) moral analogy.
The behavior of the V-2, being an analog device, was a continuous
function of all its parameters. It failed the way analog devices typically
fail -- localized failures for localized problems. Once rockets were
controlled by computer software, however, they became vulnerable to
additional failure modes that could be extremely generalized even for
extremely localized problems.

"In the discrete world of computing," Dijkstra concludes, "there is no
meaningful metric in which ‘small’ change and ‘small’ effects go hand
in hand, and there never will be." This discontinuous and
disproportionate connection between cause and effect is unique to
digital computers and creates a special difficulty for consequentialist
theories. The decision procedure commonly followed by utilitarians (a
type of consequentialist) requires them to predict alternative
consequences for the alternative actions available to them in a
particular situation. An act is good if it produces good consequences,
or at least a net excess of good consequences over bad. The
fundamental difficulty utilitarians face, if Dijkstra is right, is that the
normally predictable linkage between acts and their effects is
severely skewed by the infusion of computing technology. In short,
we simply cannot tell what effects our actions will have on computers
by analogy to the effects our actions have on other machines.

EXAMPLE 8: Uniquely Coded

Computers operate by constructing codes upon codes upon codes --
cylinders on top of tracks, tracks on top of sectors, sectors on top of
records, records on top of fields, fields on top of characters,
characters on top of bytes, and bytes on top of primitive binary digits.
Computer "protocols" like TCP/IP are comprised of layer upon layer
of obscure code conventions that tell computers how to interpret and
process each binary digit passed to it. For digital computers, this is

 14

business as usual. In a very real sense, all data is multiply "encrypted"
in the normal course of computer operations.

Because of this common practice, much valuable information from the
recent past is stranded on computer media that can only be
deciphered by primitive or discarded systems using obsolete
software. This growing problem is due to the rapid rate of
obsolescence for I/O devices, the continual evolution of media
formats, and the failure of programmers to keep a permanent record
of how they chose to package data. It is ironic that state-of-the-art
computer technology, during the brief period when it is current, greatly
accelerates the transmission of information. But when it becomes
obsolete, it has an even stronger reverse effect. Not every record
deserves to be saved but, on the balance, it seems likely that
computers will impede the normal generational flow of significant
information and culture. Computer users obviously do not conspire to
put history out of reach of their children but, given the unique way
computers layer and store codes, the result could be much the same.
Data archeologists will manage to salvage bits and pieces of our
encoded records, but much will be permanently lost.

This raises a moral issue as old as civilization itself. It is arguably
wrong to harm future generations of humanity by depriving them of
information they will need and value. It stunts commercial and
scientific progress, prevents people from learning the truth about their
origins, and it may force nations to repeat bitter lessons from the past.
Granted, there is nothing unique about this issue. Over the long sweep
of civilized history, entire cultures have been annihilated, great
libraries have been plundered and destroyed, books have been
banned and burned, languages have withered and died, ink has
bleached in the sun, and rolls of papyrus have decayed into fragile,
cryptic memoirs of faraway times.

But has there ever in the history of the world been a machine that
could bury culture the way computers can? Just about any modern
media recording device has the potential to swallow culture, but the
process is not automatic and information is not hidden below
convoluted layers of obscure code. Computers, on the other hand,
because of the unique way they store and process information, are far
more likely to bury culture. The increased risk associated with the

 15

reliance on computers for archival data storage transforms the moral
issues surrounding the preservation and transmission of culture. The
question is not, Will some culturally important information be lost?
When digital media become the primary repositories for information,
the question becomes, Will any stored records be readable in the
future? Without computers, the issue would not arise in this highly
altered form.

Conclusion

I have tried to show that there are issues and problems that are unique
to computer ethics. For all of these issues, there was an essential
involvement of computing technology. Except for this technology,
these issues would not have arisen or would not have arisen in their
highly altered form. The failure to find satisfactory non-computer
analogies testifies to the uniqueness of these issues. The lack of an
adequate analogy, in turn, has interesting moral consequences.
Normally, when we confront unfamiliar ethical problems, we use
analogies to build conceptual bridges to similar situations we have
encountered in the past. Then we try to transfer moral intuitions across
the bridge, from the analog case to our current situation. Lack of an
effective analogy forces us to discover new moral values, formulate
new moral principles, develop new policies, and find new ways to
think about the issues presented to us. For all of these reasons, the
kind of issues I have been illustrating deserves to be addressed
separately from others that might at first appear similar. At the very
least, they have been so transformed by computing technology that
their altered form demands special attention.

