Efficient multiplicative updates for SVM

Sergey Plis

Computer Science Department
University of New Mexico

NIMH grant number 1R01MH076282-01
joint work with Vamsi Potluru, Morten Mørup,
Vince Calhoun, and Terran Lane

Outline

(1) Introduction

- Support Vector Machines
- Non-negative Matrix Factorization
- NQP
(2) SVM as NMF
(3) Experiments

Outline

(1) Introduction

- Support Vector Machines
- Non-negative Matrix Factorization
- NQP

(2) SVM as NMF

(3) Experiments

Maximum Margin Classifiers

- Given two classes A and B

Data is a set of labeled examples $\left\{\left(\boldsymbol{x}_{i}, y_{i}\right)\right\}_{i=1}^{N}$

- Bayesian Decision

Boundary: Distributions are known
$g(\boldsymbol{x})=P(A \mid \boldsymbol{x})-P(B \mid \boldsymbol{x})=0$

- Maximum Margin

Hyperplane: Only data is
given

Maximum Margin Classifiers

- Given two classes A and B Data is a set of labeled examples $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$
■ Bayesian Decision Boundary: Distributions are known

$$
g(\boldsymbol{x})=P(A \mid \boldsymbol{x})-P(B \mid \boldsymbol{x})=0
$$

- Maximum Margin Hyperplane: Only data is given

Maximum Margin Classifiers

- Given two classes A and B Data is a set of labeled examples $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$
- Bayesian Decision Boundary: Distributions are known
$g(x)=P(A \mid x)-P(B \mid x)=0$
■ Maximum Margin Hyperplane: Only data is given

Mapping to Higher Dimensions

- A two class problem: not separable by a line
- Map each point into a higher dimensional space:

$$
\eta_{i}=\Phi\left(x_{i}\right)
$$

- Choose Φ so the data becomes linearly separable $\Phi(\boldsymbol{x})=\left(x_{1}^{2}, \sqrt{(2)} x_{1} x_{2}, x_{2}^{2}\right)$

Mapping to Higher Dimensions

- A two class problem: not

separable by a line

■ Map each point into a higher dimensional space:

$$
\boldsymbol{\eta}_{i}=\Phi\left(\boldsymbol{x}_{i}\right)
$$

- Choose Φ so the data becomes linearly separable $\Phi(\boldsymbol{x})=\left(x_{1}^{2}, \sqrt{(2)} x_{1} x_{2}, x_{2}^{2}\right)$

Mapping to Higher Dimensions

- A two class problem: not separable by a line
- Map each point into a higher dimensional space:

$$
\eta_{i}=\Phi\left(\boldsymbol{x}_{i}\right)
$$

- Choose Φ so the data becomes linearly separable

$$
\Phi(\boldsymbol{x})=\left(x_{1}^{2}, \sqrt{(2)} x_{1} x_{2}, x_{2}^{2}\right)
$$

Kernel trick

■ Dimensions can be many (even ∞)!. Have to compute very expensive inner product?

- Avoid it by defining Hilbert spaces with kernels

Kernel trick

- Dimensions can be many (even ∞)!. Have to compute very expensive inner product?
■ Avoid it by defining Hilbert spaces with kernels

$$
\begin{aligned}
\langle\Phi(\boldsymbol{x}), \Phi(\boldsymbol{y})\rangle & = & \boldsymbol{k}(\boldsymbol{x}, \boldsymbol{y}) \\
\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)\left(y_{1}^{2}, \sqrt{2} y_{1} y_{2}, y_{2}^{2}\right)^{T} & = & (\boldsymbol{x} \cdot \boldsymbol{y})^{2} \\
x_{1}^{2} y_{1}^{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{2}^{2} y_{2}^{2} & & \left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}
\end{aligned}
$$

- Take a linear algorithm, replace inner products with kernels and get a nonlinear algorithm as a result!

Kernel trick

- Dimensions can be many (even ∞)!. Have to compute very expensive inner product?
- Avoid it by defining Hilbert spaces with kernels

- Take a linear algorithm, replace inner products with kernels and get a nonlinear algorithm as a result!

Primal form

■ Separating hyperplane

$$
y=\quad \operatorname{sign}((\boldsymbol{w} \cdot \boldsymbol{x})+b)
$$

■ Classification error

$$
y_{i}\left(\left(\boldsymbol{w} \cdot \Phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right)+b\right)
$$

■ Quadratic optimization problem

$$
\begin{array}{r}
\min _{\boldsymbol{W}, b} \frac{1}{2}\|\boldsymbol{w}\|^{2} \\
\text { subject to } y_{i}\left(\left(\boldsymbol{w} \cdot \Phi\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right)+b\right) \geq 1, i \in\{1 . . n\}
\end{array}
$$

Dual form

■ Introduce Lagrange multipliers:

$$
L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\left(\boldsymbol{w} \cdot \Phi\left(\boldsymbol{x}_{i}\right)\right)+b\right)-1\right)
$$

■ The dual quadratic optimization problem for SVM Schölkopf and Smola [2001] is given by minimizing the following loss function:

$$
\begin{array}{r}
S(\boldsymbol{\alpha})=\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\sum_{i=1}^{n} \alpha_{i} \\
\text { subject to } \alpha_{i} \geq 0, i \in\{1 . . n\}
\end{array}
$$

Dual form

■ Introduce Lagrange multipliers:

$$
L(\boldsymbol{w}, b, \boldsymbol{\alpha})=\frac{1}{2}\|\boldsymbol{w}\|^{2}-\sum_{i=1}^{n} \alpha_{i}\left(y_{i}\left(\left(\boldsymbol{w} \cdot \Phi\left(\boldsymbol{x}_{i}\right)\right)+b\right)-1\right)
$$

■ The dual quadratic optimization problem for SVM Schölkopf and Smola [2001] is given by minimizing the following loss function:

$$
\begin{array}{r}
S(\boldsymbol{\alpha})=\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\sum_{i=1}^{n} \alpha_{i} \\
\text { subject to } \alpha_{i} \geq 0, \\
i \in\{1 . . n\} \\
\\
\sum_{i=1}^{n} \alpha_{i} y_{i}=0
\end{array}
$$

Additive Features

- Features are nonnegative and only add up
- Features are unknown: data comes as their combination

Additive Features

- Features are nonnegative and only add
- Features are unknown: data comes as their combination

Mathematical Formulation

■ Given data \boldsymbol{X} find its factorization:

$$
\begin{array}{r}
\boldsymbol{X} \approx \boldsymbol{W} \boldsymbol{H} \\
\boldsymbol{X}_{i j} \geq 0 \boldsymbol{W}_{i j} \geq 0 \boldsymbol{H}_{i j} \geq 0
\end{array}
$$

- Minimize the objective function:

$$
E=\frac{1}{2}\|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2}
$$

- Ignore other possible objectives

Mathematical Formulation

■ Given data \boldsymbol{X} find its factorization:

$$
\begin{array}{r}
\boldsymbol{X} \approx \boldsymbol{W} \boldsymbol{H} \\
\boldsymbol{X}_{i j} \geq 0 \boldsymbol{W}_{i j} \geq 0 \boldsymbol{H}_{i j} \geq 0
\end{array}
$$

■ Minimize the objective function:

$$
E=\frac{1}{2}\|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2}
$$

- Ignore other possible objectives

Mathematical Formulation

■ Given data \boldsymbol{X} find its factorization:

$$
\begin{array}{r}
\boldsymbol{X} \approx \boldsymbol{W} \boldsymbol{H} \\
\boldsymbol{X}_{i j} \geq 0 \boldsymbol{W}_{i j} \geq 0 \boldsymbol{H}_{i j} \geq 0
\end{array}
$$

■ Minimize the objective function:

$$
E=\frac{1}{2}\|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2}
$$

■ Ignore other possible objectives

Gradient Descent

- Compute the derivative and find its zero

$$
\begin{array}{lc}
\frac{\partial E}{\partial \boldsymbol{W}}= & \boldsymbol{W} \boldsymbol{H} \boldsymbol{H}^{\top}-\boldsymbol{X} \boldsymbol{H}^{\top} \\
\frac{\partial E}{\partial \boldsymbol{H}}= & \boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{H}-\boldsymbol{W}^{\top} \boldsymbol{X}
\end{array}
$$

- Classical solution
$\boldsymbol{H}+\boldsymbol{\eta} \odot\left(\boldsymbol{W}^{\top} \boldsymbol{X}-\boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{H}\right)$
- Exponentiated gradient

Gradient Descent

■ Compute the derivative and find its zero

$$
\begin{array}{lc}
\frac{\partial E}{\partial \boldsymbol{W}}= & \boldsymbol{W} \boldsymbol{H} \boldsymbol{H}^{\top}-\boldsymbol{X} \boldsymbol{H}^{\top} \\
\frac{\partial E}{\partial \boldsymbol{H}}= & \boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{H}-\boldsymbol{W}^{\top} \boldsymbol{X}
\end{array}
$$

■ Classical solution

$$
\boldsymbol{H}=\quad \boldsymbol{H}+\boldsymbol{\eta} \odot\left(\boldsymbol{W}^{\top} \boldsymbol{X}-\boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{H}\right)
$$

- Exponentiated gradient

Gradient Descent

■ Compute the derivative and find its zero

$$
\begin{array}{rr}
\frac{\partial E}{\partial \boldsymbol{W}} & = \\
\frac{\boldsymbol{W} \boldsymbol{H} \boldsymbol{H}^{T}-\boldsymbol{X} \boldsymbol{H}^{T}}{\partial \boldsymbol{H}}= & \boldsymbol{W}^{T} \boldsymbol{W} \boldsymbol{H}-\boldsymbol{W}^{T} \boldsymbol{X}
\end{array}
$$

■ Classical solution

$$
\boldsymbol{H}=\quad \boldsymbol{H}+\boldsymbol{\eta} \odot\left(\boldsymbol{W}^{T} \boldsymbol{X}-\boldsymbol{W}^{T} \boldsymbol{W} \boldsymbol{H}\right)
$$

■ Exponentiated gradient

$$
\boldsymbol{H}=\quad \boldsymbol{H} \odot e^{\eta \odot\left(\boldsymbol{W}^{\top} \boldsymbol{X}-\boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{H}\right)}
$$

Multiplicative Updates

■ Setting the learning rate:

$$
\eta=\quad \frac{H}{W^{\top} W H}
$$

■ Results in updates:

$$
W=
$$

■ Advantages:
■ automatic non-negativity constraint satisfaction

- adaptive learning rate
- no parameter setting

Multiplicative Updates

■ Setting the learning rate:

$$
\eta=\quad \frac{H}{W^{\top} W H}
$$

■ Results in updates:

$$
\begin{array}{rlrl}
\boldsymbol{W} & = & \boldsymbol{W} \odot \frac{\boldsymbol{X} \boldsymbol{H}^{T}}{\boldsymbol{W} \boldsymbol{H} \boldsymbol{H}^{T}}, \\
\boldsymbol{H}= & \boldsymbol{H} \odot \frac{\boldsymbol{W}^{T} \boldsymbol{X}}{\boldsymbol{W}^{T} \boldsymbol{W} \boldsymbol{H}},
\end{array}
$$

- Advantages:

■ automatic non-negativity constraint satisfaction

- adaptive learning rate
- no parameter setting

Multiplicative Updates

■ Setting the learning rate:

$$
\eta=\quad \frac{H}{W^{T} W H}
$$

■ Results in updates:

$$
\begin{aligned}
\boldsymbol{W} & = & \boldsymbol{W} \odot \frac{\boldsymbol{X} \boldsymbol{H}^{T}}{\boldsymbol{W} \boldsymbol{H} \boldsymbol{H}^{T}}, \\
\boldsymbol{H} & = & \boldsymbol{H} \odot \frac{\boldsymbol{W}^{T} \boldsymbol{X}}{\boldsymbol{W}^{T} \boldsymbol{W} \boldsymbol{H}},
\end{aligned}
$$

- Advantages:

■ automatic non-negativity constraint satisfaction

- adaptive learning rate
- no parameter setting

Non-negative Quadratic Programming

$$
\begin{array}{r}
F(\boldsymbol{\alpha})=\frac{1}{2} \boldsymbol{\alpha}^{T} \boldsymbol{A} \boldsymbol{\alpha}-\mathbf{1}^{T} \boldsymbol{\alpha}, \\
\text { subject to } \alpha_{i} \geq 0, i \in\{1 . . n\}
\end{array}
$$

Outline

(1) Introduction

- Support Vector Machines
- Non-negative Matrix Factorization
- NQP
(2) SVM as NMF
(3) Experiments

SVM as NMF-type problem

- SVM dual formulation

$$
\begin{array}{r}
S(\boldsymbol{\alpha})=\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\sum_{i=1}^{n} \alpha_{i} \\
\text { subject to } \alpha_{i} \geq 0, i \in\{1 . . n\},
\end{array}
$$

■ Looks like NMF:

- NMF objective function:

$$
E=\frac{1}{2}\|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2}
$$

SVM as NMF-type problem

■ SVM dual formulation

$$
\begin{array}{r}
S(\boldsymbol{\alpha})=\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\sum_{i=1}^{n} \alpha_{i} \\
\quad \text { subject to } \alpha_{i} \geq 0, i \in\{1 . . n\},
\end{array}
$$

■ Rewrite the square

$$
\min _{\boldsymbol{\alpha}} \frac{1}{2}\left(\sum_{i j \in A} \alpha_{i} \alpha_{j} k_{i j}-2 \sum_{\substack{i \in B \\ j \in A}} \alpha_{i} \alpha_{j} k_{i j}+\sum_{i j \in B} \alpha_{i} \alpha_{j} k_{i j}\right)-\sum_{i=1}^{n} \alpha_{i}
$$

- Looks like NMF:
subject to $\alpha_{i} \geq 0$,

SVM as NMF-type problem

■ Looks like NMF:

$$
\begin{array}{r}
\min _{\boldsymbol{\alpha}} \frac{1}{2}\left\|\Phi\left(\boldsymbol{X}_{A}\right) \boldsymbol{\alpha}_{A}-\Phi\left(\boldsymbol{X}_{B}\right) \boldsymbol{\alpha}_{B}\right\|_{2}^{2}-\sum_{i \in\{A, B\}} \alpha_{i} \\
\text { subject to } \alpha_{i} \geq 0
\end{array}
$$

■ NMF objective function:
$E=\frac{1}{2}\|X-W H\|_{F}^{2}$

SVM as NMF-type problem

■ Looks like NMF:

$$
\begin{array}{r}
\min _{\boldsymbol{\alpha}} \frac{1}{2}\left\|\Phi\left(\boldsymbol{X}_{A}\right) \boldsymbol{\alpha}_{A}-\Phi\left(\boldsymbol{X}_{B}\right) \boldsymbol{\alpha}_{B}\right\|_{2}^{2}-\sum_{i \in\{A, B\}} \alpha_{i} \\
\text { subject to } \alpha_{i} \geq 0
\end{array}
$$

■ NMF objective function:

$$
E=\frac{1}{2}\|\boldsymbol{X}-\boldsymbol{W} \boldsymbol{H}\|_{F}^{2}
$$

Multiplicative updates

■ Differentiate the objective

$$
\begin{aligned}
\frac{\partial S}{\partial \boldsymbol{\alpha}_{A}} & = & \left\langle\Phi\left(\boldsymbol{X}_{A}\right), \Phi\left(\boldsymbol{X}_{A}\right)\right\rangle \boldsymbol{\alpha}_{A}-\left\langle\Phi\left(\boldsymbol{X}_{A}\right), \Phi\left(\boldsymbol{X}_{B}\right)\right\rangle \boldsymbol{\alpha}_{B}-\mathbf{1} \\
& = & K\left(\boldsymbol{X}_{A}, \boldsymbol{X}_{A}\right) \boldsymbol{\alpha}_{A}-\left(K\left(\boldsymbol{X}_{A}, \boldsymbol{X}_{B}\right) \boldsymbol{\alpha}_{B}+\mathbf{1}\right)
\end{aligned}
$$

■ Simple multiplicative updates for SVM

$$
\begin{array}{ll}
\boldsymbol{\alpha}_{A}= & \boldsymbol{\alpha}_{A} \odot \frac{K\left(\boldsymbol{X}_{A}, \boldsymbol{X}_{B}\right) \boldsymbol{\alpha}_{B}+\mathbf{1}}{K\left(\boldsymbol{X}_{A}, \boldsymbol{X}_{A}\right) \boldsymbol{\alpha}_{A}} \\
\boldsymbol{\alpha}_{B}= & \boldsymbol{\alpha}_{B} \odot \frac{K\left(\boldsymbol{X}_{B}, \boldsymbol{X}_{A}\right) \boldsymbol{\alpha}_{A}+\mathbf{1}}{K\left(\boldsymbol{X}_{B}, \boldsymbol{X}_{B}\right) \boldsymbol{\alpha}_{B}}
\end{array}
$$

Multiplicative updates (cont.)

■ Multiplicative Updates for Sign Insensitive Kernel SVM

$$
\begin{array}{ll}
\boldsymbol{\alpha}_{A}= & \boldsymbol{\alpha}_{A} \odot \frac{\boldsymbol{K}_{A B}^{+} \boldsymbol{\alpha}_{B}+\boldsymbol{K}_{A}^{-} \boldsymbol{\alpha}_{A}+\mathbf{1}+\boldsymbol{D}_{A} \boldsymbol{\alpha}_{A}}{\boldsymbol{K}_{A} \boldsymbol{\alpha}_{A}+\boldsymbol{K}_{A B}^{-} \boldsymbol{\alpha}_{B}+\boldsymbol{D}_{A} \boldsymbol{\alpha}_{A}} \\
\boldsymbol{\alpha}_{B}= & \boldsymbol{\alpha}_{B} \odot \frac{\boldsymbol{K}_{B A}^{+} \boldsymbol{\alpha}_{A}+\boldsymbol{K}_{B}^{-} \boldsymbol{\alpha}_{B}+\mathbf{1}+\boldsymbol{D}_{B} \boldsymbol{\alpha}_{B}}{\boldsymbol{K}_{B}^{+} \boldsymbol{\alpha}_{B}+\boldsymbol{K}_{B A}^{-} \boldsymbol{\alpha}_{A}+\boldsymbol{D}_{B} \boldsymbol{\alpha}_{B}}
\end{array}
$$

■ semiNMF-type SVM updates

$$
\begin{array}{ll}
\boldsymbol{\alpha}_{A}= & \boldsymbol{\alpha}_{A} \odot \sqrt{\frac{\boldsymbol{K}_{A B}^{+} \boldsymbol{\alpha}_{B}+\boldsymbol{K}_{A}^{-} \boldsymbol{\alpha}_{A}+\mathbf{1}}{\boldsymbol{K}_{A}^{+} \boldsymbol{\alpha}_{A}+\boldsymbol{K}_{A B}^{-} \boldsymbol{\alpha}_{B}}} \\
\boldsymbol{\alpha}_{B}= & \alpha_{B} \odot \sqrt{\frac{\boldsymbol{K}_{B A}^{+} \boldsymbol{\alpha}_{A}+\boldsymbol{K}_{B}^{-} \boldsymbol{\alpha}_{B}+\mathbf{1}}{\boldsymbol{K}_{B}^{+} \boldsymbol{\alpha}_{B}+\boldsymbol{K}_{B A}^{-} \boldsymbol{\alpha}_{A}}}
\end{array}
$$

Sum Constraint and Box Constraint

■ Soft Margin SVM (the box constraint)

$$
\begin{aligned}
& \min _{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\sum_{i=1}^{n} \alpha_{i} \\
& \text { subject to } 0 \leq \alpha_{i} \leq I, i \in\{1 . . n\}
\end{aligned}
$$

- Bias

■ Introduce λ and rewrite $\sum_{i} y_{i} \alpha_{i}=0$ as:

$$
\sum_{i \in A} \alpha_{i}=\lambda, \sum_{i \in B} \alpha_{j}=\lambda
$$

■ Redefine $\beta_{k}=\alpha_{k} / \lambda$ and solve resulting SVM for λ and β using multiplicative updates

Outline

(1) Introduction

- Support Vector Machines
- Non-negative Matrix Factorization
- NQP
(2) SVM as NMF
(3) Experiments

Simulations

■ MUSIK takes bigger steps and follows a different path

- Converges faster within a given tolerance

Simulations

- MUSIK takes bigger steps and follows a different path
 ■ Converges faster within a given tolerance

it works correctly

- Check on UCI dataset Newman and Merz [1998]
- Sonar and Breast cancer data
- Convergence is fast (breast cancer dataset)

it works correctly (cont.)

Kernel		Breast			Sonar		
		M^{3}	M	KA	M^{3}	M	KA
$\frac{\lambda}{0}$	4	2.26	2.26	2.26	9.62	9.62	9.62
	6	3.76	3.76	3.76	10.58	10.58	10.58
	3	2.26	2.26	2.26	11.53	11.53	11.53
	1	0.75	0.75	0.75	7.69	7.69	7.69

Converges to the exact same global solution

it works fast

Objective

Training error

... and it is general

Conclusions

■ Clean connection between SVM and NMF
■ Fully multiplicative algorithm for SVM
■ Simple to code algorithm: about 5 Matlab lines
■ Speed Improvements
Theoretically (asymptotic convergence rates) and practically faster
■ Possibility for algorithm reuse
■ SVM for NMF
■ NMF for SVM
■ Further details in SDM 2009 paper

Thank you!

Bibliography

C. L. Blake D. J. Newman and C. J. Merz. UCI repository of machine learning databases, 1998. URL http:
//www.ics.uci.edu/\$\sim\$mlearn/MLRepository.html.
Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning). The MIT Press, 2001. ISBN 0262194759. URL
http://www.amazon.ca/exec/obidos/redirect?tag= citeulike09-20
\&path=ASIN/0262194759.

