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Introduction Support Vector Machines

Maximum Margin Classifiers

Given two classes A and B
Data is a set of labeled
examples {(x i , yi)}Ni=1
Bayesian Decision
Boundary: Distributions
are known

g(x) = P(A|x)− P(B|x) = 0

Maximum Margin
Hyperplane: Only data is
given
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Introduction Support Vector Machines

Mapping to Higher Dimensions

A two class problem: not
separable by a line
Map each point into a
higher dimensional space:

ηi = Φ(x i)

Choose Φ so the data
becomes linearly
separable

Φ(x) = (x2
1 ,

√
(2)x1x2, x2

2 )
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Introduction Support Vector Machines

Kernel trick

Dimensions can be many (even∞)!.Have to compute very
expensive inner product?
Avoid it by defining Hilbert spaces with kernels

〈Φ(x),Φ(y)〉 = k(x ,y)

(x2
1 ,
√

2x1x2, x2
2 )(y2

1 ,
√

2y1y2, y2
2 )T = (x · y)2

x2
1 y2

1 + 2x1x2y1y2 + x2
2 y2

2 = (x1y1 + x2y2)2

Take a linear algorithm, replace inner products with kernels and
get a nonlinear algorithm as a result!
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Introduction Support Vector Machines

Primal form

Separating hyperplane

y = sign((w · x) + b)

Classification error

yi((w · Φ(xi)) + b)

Quadratic optimization problem

min
w ,b

1
2
‖w‖2

subject to yi((w · Φ(xi)) + b) ≥ 1, i ∈ {1..n}
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Introduction Support Vector Machines

Dual form

Introduce Lagrange multipliers:

L(w ,b,α) =
1
2
‖w‖2 −

n∑
i=1

αi(yi((w · Φ(xi)) + b)− 1)

The dual quadratic optimization problem for SVM Schölkopf and
Smola [2001] is given by minimizing the following loss function:

S(α) =
1
2

n∑
i,j=1

αiαjyiyjk(x i ,x j)−
n∑

i=1

αi

subject to αi ≥ 0, i ∈ {1..n},
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Introduction Non-negative Matrix Factorization

Additive Features

Features are non-
negative and only add
up
Features are unknown:
data comes as their
combination
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Introduction Non-negative Matrix Factorization

Mathematical Formulation

Given data X find its factorization:

X ≈WH
X ij ≥ 0 W ij ≥ 0 H ij ≥ 0

Minimize the objective function:

E =
1
2
‖X −WH‖2F

Ignore other possible objectives
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Introduction Non-negative Matrix Factorization

Gradient Descent

Compute the derivative and find its zero

∂E
∂W

= WHHT − XHT

∂E
∂H

= W T WH −W T X

Classical solution

H = H + η � (W T X −W T WH)

Exponentiated gradient

H = H � eη�(W T X−W T WH)
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Introduction Non-negative Matrix Factorization

Multiplicative Updates

Setting the learning rate:

η =
H

W T WH

Results in updates:

W = W � XHT

WHHT ,

H = H � W T X
W T WH

,

Advantages:
automatic non-negativity constraint satisfaction
adaptive learning rate
no parameter setting
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Introduction NQP

Non-negative Quadratic Programming

F (α) =
1
2
αT Aα− 1T α,

subject to αi ≥ 0, i ∈ {1..n}
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SVM as NMF

SVM as NMF-type problem

SVM dual formulation

S(α) =
1
2

n∑
i,j=1

αiαjyiyjk(x i ,x j)−
n∑

i=1

αi

subject to αi ≥ 0, i ∈ {1..n},

Looks like NMF:

min
α

1
2
‖Φ(X A)αA − Φ(X B)αB‖22 −

∑
i∈{A,B}

αi

subject to αi ≥ 0,

NMF objective function:

E =
1
2
‖X −WH‖2F
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2
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SVM as NMF

Multiplicative updates

Differentiate the objective

∂S
∂αA

= 〈Φ(X A),Φ(X A)〉αA − 〈Φ(X A),Φ(X B)〉αB − 1

= K (X A,X A)αA − (K (X A,X B)αB + 1)

Simple multiplicative updates for SVM

αA = αA �
K (X A,X B)αB + 1

K (X A,X A)αA

αB = αB �
K (X B,X A)αA + 1

K (X B,X B)αB
,
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SVM as NMF

Multiplicative updates (cont.)

Multiplicative Updates for Sign Insensitive Kernel SVM

αA = αA �
K +

ABαB + K−A αA + 1 + DAαA

K AαA + K−ABαB + DAαA

αB = αB �
K +

BAαA + K−B αB + 1 + DBαB

K +
B αB + K−BAαA + DBαB

semiNMF-type SVM updates

αA = αA �

√
K +

ABαB + K−A αA + 1
K +

A αA + K−ABαB

αB = αB �

√
K +

BAαA + K−B αB + 1
K +

B αB + K−BAαA
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SVM as NMF

Sum Constraint and Box Constraint

Soft Margin SVM (the box constraint)

min
α

1
2

n∑
i,j=1

αiαjyiyjk(x i ,x j)−
n∑

i=1

αi

subject to 0 ≤ αi ≤ l , i ∈ {1..n}.

Bias
Introduce λ and rewrite

∑
i yiαi = 0 as:∑

i∈A

αi = λ,
∑
i∈B

αj = λ

Redefine βk = αk/λ and solve resulting SVM for λ and β using
multiplicative updates
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Experiments

Simulations

MUSIK takes bigger
steps and follows a
different path
Converges faster within
a given tolerance
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Experiments

it works correctly

Check on UCI
dataset Newman and
Merz [1998]
Sonar and Breast
cancer data
Convergence is fast
(breast cancer dataset)

i support vectors εt (%) εg(%)

0 3.8 0.0

1 2.5 3.0

2 1.5 1.5

4 0.5 1.5

8 0.2 2.3

16 0.0 2.3

64 0.0 2.3
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Experiments

it works correctly (cont.)

Kernel
Breast Sonar

M3 M KA M3 M KA

Po
ly

4 2.26 2.26 2.26 9.62 9.62 9.62

6 3.76 3.76 3.76 10.58 10.58 10.58

G
au

ss
ia

n

3 2.26 2.26 2.26 11.53 11.53 11.53

1 0.75 0.75 0.75 7.69 7.69 7.69

Converges to the exact same global solution
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Experiments

it works fast

Objective Training error
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Experiments

... and it is general
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Experiments

Conclusions

Clean connection between SVM and NMF
Fully multiplicative algorithm for SVM
Simple to code algorithm: about 5 Matlab lines
Speed Improvements
Theoretically (asymptotic convergence rates) and practically faster
Possibility for algorithm reuse

SVM for NMF
NMF for SVM

Further details in SDM 2009 paper
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Experiments

Thank you!
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Experiments
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