
Protected Data Paths: Delivering Sensitive Data via Untrusted Proxies

Jiantao Kong and Karsten Schwan Patrick Widener

College of Computing Department of Computer Science

Georgia Institute of Technology University of New Mexico

{jiantao,schwan}@cc.gatech.edu widener@cs.unm.edu

Abstract
 The ability to share sensitive information is a key

necessity for today's distributed enterprise applications.

This paper presents a kernel-level mechanism for

controlling the exchanges of sensitive data, termed

Protected Data Paths. The mechanism permits only

machines with suitable credentials to cache and

manipulate protected data, and it gives protection

domains access to such data only as per their rights

specified in the capabilities they possess. Our

implementation of Protected Data Paths in Linux

operates by creating protected communication channels

between participating machines. Path establishment

requires such machines' kernel domains to have suitable

credentials. Data transferred via such paths is made

available to application-level domains only as per their

current data access capabilities, guaranteed by kernel-

level supervision of such data accesses.

1. Introduction

With today's highly connected computing systems and

their web service-based programming infrastructures, it

has become common for applications to be constructed as

sets of components developed by different companies and

run on machines owned and operated by multiple

organizations and/or application participants. For

instance, for efficient content delivery to large numbers of

web clients, web servers routinely interact with backend

machines via intermediate proxy caches, and additional

data caching occurs in edge servers, to better deal with the

heterogeneous nature of the Internet [1,2,3,4]. Further,

internally, web service infrastructures like JBOSS [5] or

Websphere [6] make extensive use of results and

parameter caching on intermediate machines, to offload

backends that often constitute the bottlenecks in multi-tier

web service applications.

An issue with the extensive data caching and data

sharing ongoing in distributed infrastructures is that these

systems provide few or no guarantees to end users about

the privacy of the data being exchanged. That is, when an

application-level proxy caches data on its machine, end

users are not protected from potential violations in data

access by such third parties. The unfortunate outcomes are

(1) a lack of control over data movement and thus,

potential violations of data privacy and/or (2) the resulting

inability for corporations or entities to use efficient web-

based infrastructures for secure data exchanges. Consider,

for example, a health information system that consists of

applications owned by different departments. Such a

system usually deploys a HL7 hub to manage the

exchanging of patient information in HL7 message format

[7]. Here, patient data must be shared, privacy must be

maintained, and in addition, each department should only

have access to certain portions of the data.

Unfortunately, for distributed applications with data

privacy concerns, there now neither exists a way to

maintain privacy if intermediate proxies are used to

operate on such data like relaying or caching, nor is there

a way to differentially protect certain data portions.

Instead, applications that are involved in sensitive

information exchanges are assumed to be fully trustworthy

and thus have full access rights to data. In the health

information system above, patient information is fully

exposed to the HL7 hub applications. However, a

malfunctioning HL7 hub may pass additional information

to the target users or even disclose information to

unauthorized parties. Such behavior clearly violates the

principle of least privilege [8], which states that data

should be accessible only to those parties that must have

access to it.

There are many other examples of applications and

systems for which stricter controls on data access would

be desirable. Firewall or proxy applications, for instance,

should not be able to access actual data content beyond

what is needed for their tasks, but unfortunately, to attain

desired high performance, their current implementations

often violate this principle. Particularly obvious examples

are the content delivery infrastructures mentioned earlier,

which routinely use multiple server mirrors and multiple

layers of proxy caches to attain desired levels of

performance.

This paper describes a novel set of operating system

mechanisms that permit sensitive data to be exchanged

across different machines so as to follow the principle of

least privilege. Specifically, the Protected Data Paths

(PDPs) mechanisms dynamically construct protected data

delivery paths across the multiple machines used by a

distributed application. Sensitive data is protected from

inappropriate access by using different protection

domains, the kernel domains and application domains, to

transfer data vs. managing such data exchanges:

� By providing efficient interfaces between the

protection domains that transfer data and the ones

that manage it, data privacy is guaranteed without

compromising the high performance attained by the

rich management methods present in current

distributed systems [2]. In a Linux-based

implementation of a distributed data cache, the

operating system kernel (i.e., the kernel domain)

transfers and store sensitive data, and application

processes are the domains that manage data

caching.

� By controlling how and which portions of data a

protection domain can access, data privacy

concerns are met while also enabling diverse ways

in which data is manipulated. In the Linux

implementation of PDP-based caching, the kernel

maintains credentials (i.e., access right information)

for application-level processes, and all accesses to

sensitive cached data by application processes

engender kernel-level access checks. Once moved

into the application domain, data may be

manipulated in any way desired.

� By permitting only trusted machines and their OS

kernels to participate in a PDP, the integrity

protected data delivery is guaranteed.

As indicated above, the Linux implementation of PDPs

uses a straightforward credential-based implementation of

capabilities to restrict the data access rights of

participating machines and also, to delimit the data access

rights of all protection domains that manipulate the data

being exchanged. The list of capabilities owned by a

protection domain completely defines its rights to transfer

and/or to manipulate sensitive data. Our future

implementation of the concept will use multiple virtual

machines running on virtualized execution platforms,

thereby further isolating path-level data from the parties

not permitted to directly access or manipulate it.

Protected Data Paths are designed to deal with both the

threats of compromised credentials and data delivery

paths. Ignoring how users are authorized, which is not the

focus of this paper, the current PDP implementation

addresses capability forgery by using digitally signed

credentials. It controls capability reuse by associating a

capability with a specific end user application (i.e.,

protection domain) in a specific location (i.e., on some

machine). Finally, capability propagation is prevented by

never handing out actual capabilities but instead,

providing only capability references to end user

applications.

The Linux implementation of PDPs uses a trusted

kernel module to performs credential management and

enforce capability-based data access control. Application

domains that require access to protected data do so via

intercepted calls to the kernel domain. No application

module can access or use data other than what is permitted

by its capabilities, even if it only acts as a forwarding

agent. For example, an untrusted proxy cache application

will receive only reference tokens to the actual data

objects cached in the kernel domain. The application can

use these tokens to control caching, including using them

to service repeated requests for the same object, but it will

not be permitted to access the object’s contents or to

change or transform it. Finally, our current

implementation does not encrypt data, so that it is open to

attacks like eavesdropping, message alteration, TCP

hijacking etc. This is easily corrected, by inserting

additional encryption and decryption actions into data

exchanges across machines. The intercepted I/O channels

explained in Section 4 provide a simple way to implement

encryption.

The principal application benefiting from the use of

Protected Data Paths evaluated in this paper performs

static content serving and caching, using the Apache

HTTP Server [3] along with the standard Squid [2] Web

Proxy Cache. Data may be cached at the application level

if no privacy concerns exist. Protected data is cached in

the operating system kernel, using a kernel-level data

cache also constructed in our research. Squid manages

such kernel-level data through capabilities (i.e., protected

data references), which, as stated earlier, are maintained

by the kernel. Many other applications can benefit from

the data privacy support offered by PDPs. One application

currently being developed by our group is the

aforementioned manipulation of patient data, by HL7 hub

applications.

Experimental evaluations of the PDP concept and

implementation demonstrate its key property: by using

PDPs, the rich methods offered by web-based data

transport and manipulation may be exploited while at the

same time, gaining the ability to enforce application-

specific data privacy constraints. For Apache, no effects

are observed for request response times and throughput

for files larger than 256K. For Squid, the PDP

mechanisms results in small improvement in response

time due to its use of the in-kernel data path. For smaller

sized files, the additional credential-related operation in

the kernel result in small increases in response time and

decreases in throughput. However, these costs can be

amortized if the same PDP is used for multiple requests.

The next section compares Protected Data Paths with

alternative methods. The detailed design of PDPs is

presented in Section 3. Section 4 describes the

implementation of Linux-based PDPs, and their usage

with an Apache HTTP Server and a Squid Web Proxy

Cache is elaborated in Section 5. Section 6 reports

measurements of experimental results with micro-

benchmarks, with Apache, and with Squid. Section 7

concludes the paper and reports on future directions.

2. Related work

Common ways protecting information in a distributed

system are authentication [9,10,18,26] and encryption

[20,21]. Here, a sender and a recipient authenticate each

other using some handshake protocol, thereby establishing

a secure communication channel. A session key is used to

encrypt all future messages for security purpose.

Examples include the HTTPS protocol on top of SSL [19]

and SFTP on top of SSH [29] etc.

Methods like those described above are point-to-point

because of their mutual-trust requirement. Even some

secure group communication middleware or secure

publish/subscribe systems [27,31] are built on top of

point-to-point connections, where each connection is

secured by the above mechanisms. In order to extend the

data path to multiple nodes, for scalability, additional

trusted nodes must be inserted into the data path, but

finding such nodes may not be trivial. SSL tunneling [24]

addresses this issue, but it only allows the Proxy to handle

an SSL connection in transparent forwarding mode,

thereby unable to perform other offloading tasks, such as

data caching. In comparison to such work, PDPs provide a

direct way of inserting into and then using additional

trusted nodes with the distributed platforms used by large-

scale applications. Furthermore, PDPs can deal with both

the secure applications reviewed above and the large set

of untrusted applications commonly used in the large-

scale enterprise systems.

A fundamental point about PDPs is that essentially, this

concept generalizes upon the extensive prior practice of

delegating certain data transfer tasks to the operating

system kernel, as with TCP Splicing [14,22], the sendfile

system call, or kernel-level http servers. While prior work

has focused on the performance advantages of such

delegation, PDPs combine such performance goals with

capability-based methods for controlling application

access to ongoing data transfers.

While PDPs apply the capability model [8] to

distributed systems, we do not innovate in the domains of

authentication and authorization, like [16]. Instead, we

simply adopt a framework that is sufficient to support the

PDP idea. Further, while the PDP approach to protection

is somewhat similar to the restricted delegation concept in

Grid Computing [15,17], for restricted delegation, the

crucial issue is to determine what access rights the end

users should grant to certain intermediate nodes. This is

necessary because the implementations of applications

like Apache/Squid still retain full access rights to the data

being transferred. In contrast, the PDP model separates

each participating node into two parts: a trusted domain

(e.g., the OS kernel) and the application domain. Users

can give full access to the trusted domain (if desired), and

at the same time, they can give the application domain

only the limited access rights needed for data management

or manipulation.

3. Design of the data delivery model

This section presents the capability-based data delivery

model used to realize Protected Data Paths. The model

addresses potentially compromised capabilities and

compromised data delivery paths. The model is designed

to isolate the management of data exchanges from the

exchanges themselves. It also carries out security checks

via trusted modules in the system kernel.

3.1. Data delivery path

Information flows in distributed systems typically

travel through multiple application components before

reaching their destinations. Figure 1 illustrates a typical

data delivery path involving a server application that

provides the data, a proxy application running at a

gateway, and a viewer application displaying data to an

end user. This delivery path may be viewed as connecting

multiple protection domains via inter-domain channels.

For instance, in Figure 1, the server, proxy, and viewer

Figure 1. Data delivery path

applications are all different protection domains.

Additional independent domains are those used by OS

subsystems like the virtual file system and the network

subsystem. All such domains exchange data with each

other via system calls and socket connections.

We base data protection on the capability model

originally proposed in Hydra [8]. Each protection domain

owns a list of capabilities that describe its access rights to

protected information. Data can be transferred from one

domain to another only when the receiving side presents

proper capabilities. Data access control is enforced on the

inter-domain communication channel.

Given this model, four steps are involved in setting up

a Protected Data Path. First, the client side application

interacts with a Capability Distribution Server (CDS) on

behalf of its end users. Using standard authorization and

authentication procedures, the CDS generates proper

credentials in response to such client requests. Second, the

CDS stores the resulting credentials in the Credential

Manager Module (CMM) resident in a trusted kernel

domain while the client receives only credential

references. Third, when the client side application

establishes a connection to some server, it associates with

this connection its credential references. Finally, for all

data items exchanged across this client-server connection,

credential checks are enforced automatically.

3.2. Credential manager authentication

The CMM is an essential part of all nodes participating

in a Protected Data Path, except for the end point at the

client side. Two CMMs authenticate each other through

an Authentication Manager Server (AMS) [9], as

illustrated in Figure 2a. A long-term secure connection is

established for two CMMs after the authentication. We

assume that the CMM will not be compromised after

authentication because it resides on a trusted kernel.

Further, the CMM remains trustworthy after

authentication as long as the secure connection is not

broken. Since the trust properties based on this

authentication are transitive, all CMMs in a distributed

system can be linked via a trusted overlay network, and all

messages exchanged between two CMMs via such an

overlay are ‘safe’, that is, their relay via intermediate

overlay nodes uses only trusted entities. The purpose of

establishing such longer-term trusted connections is to

avoid the costly authentication steps for every

communication between each two CMMs along a trusted

path. The purpose of establishing some well-defined

overlay across which all trusted data exchanges take place

is to limit the number of connections of which each CMM

must be aware. We note that the same techniques may also

be used to establish trusted links across multiple CDSes.

3.3. Credential acquisition

To limit direct user access to credentials, protection

domains other than CMMs cannot access credentials.

Instead, they use references to credentials. Given this fact,

credential acquisition (i.e., the acquisition of references to

credentials) proceeds as illustrated in Figure 2b. First, the

client application locates a CMM implementing the

capability API. This CMM might reside on the same node

as the client or on a remote node, depending on the client

application’s execution environment. In the latter case, the

client must first establish a reliable connection to the

CMM. For the identified CMM, the client next sends the

request for credentials to the CDS, along with the CMM’s

location.

The CDS generates a credential upon receiving the

client’s request. This credential is first delivered to the

CMM specified in the client request, again along with the

location of the client. Next, the CMM verifies the integrity

Authentication

Protocol
AMS

CMM

AMS

CMM

CMM

Figure 2a. CMM authentication

Deliver

Credential

Credential

Reference

Protected

Path

Credential

Binding

RPC for

Credential

Client CDS

CMM CMM

Credential

Request

Figure 2b. Acquire credentials

of the credential, stores it in a Credential Table, and

generates a locally unique credential reference number.

The credential table entry is associated with the client

process if the client process is on the same node; or with

the connection between the CMM and the client process if

both are on different nodes. The lifetime of the credential

entry is limited by the lifetime of the client process or the

connection. Moreover, the client can only use the PDP

interface to access the actual credential, and only the

associated client can use this reference number. This

prevents the improper propagation of credentials. Finally,

the CMM sends back the credential reference number to

the CDS, which then forwards it to the client.

As stated earlier, whenever some domain wishes to

access data being exchanged along a Protected Data Path,

it presents its credential reference via a system call to the

local CMM or via a RPC on the previously mentioned

connection to the remote CMM. This reference is then

translated by the CMM to an actual credential. Several

advantages of using credential references rather than

actual credentials are that (1) by limiting access to

credentials, we avoid the risk of improper credential

propagation, and (2) because a client only has a reference,

it must use the API provided by the CMM to access the

actual data being exchanged across the path. (3) The CDS

can directly interact with CMMs to revoke a credential, if

necessary, without client involvement. A subsequent use

of a revoked credential by a client would result in the

receipt of an appropriate error message.

3.4. Categories of protected data

For management purposes, all sensitive data objects

are categorized by types, and all credentials are associated

with types rather than with individual data items [31].

Thus, a credential can be viewed as the user's access rights

to some special type associated with the data being

exchanged along a protected path. The implementation of

credentials reflects this fact, where each credential

contains both a simple type descriptor identifying the type

of data to which it refers and a collection of access rights

to this type of data.

Since there are many choices in how some data

element may be accessed (i.e., which fields, which

combinations of fields, which sums of which element

entries, etc.), we represent access rights as operations (i.e.,

as code) that when applied to the data element, provide

only the information permitted by this capability. This

operational encoding of access rights ‘inside’ each

credential affords us with considerable flexibility. Stated

more explicitly, the following choices exist for how this

may be implemented: a credential may directly specify

some piece of code to be applied to the data, or instead, it

may name some kernel-level service implementing this

operation. Such code may be written in some high-level

language that is compiled dynamically [13], or it may be

some executable binary code [12]. The code may reside

‘in’ the credential, or it may be acquired later through a

code repository [11]. For complex operations, the

credential may just indicate some service name, and the

capability check module will then automatically link this

named service into the protected data delivery path.

3.5. Capability-bound I/O channel

Protected Data Paths require the association of

capabilities with data paths, i.e., with I/O channels.

Toward this end, we leverage the fact that operating

system kernels already maintain I/O channels like file

descriptors and socket connections on behalf of

applications. We use a socket connection to demonstrate

how this association and the implied capability checks are

carried out. Other I/O operations, like those for disks,

follow a similar pattern.

To establish a capability-bound socket channel, two

applications first create a normal socket connection. Next,

the request side application contacts the CMM storing the

actual credential. The CMM translates the provided

reference number into the actual credential and delivers it

to the remote CMM on the target node through a trusted

path. The CMM then determines where to apply the

credential check on the protected data object, dependent

upon whether there are CMMs on both sides and/or the

network environment. Once determined, it intercepts all

proper read/write system calls to the socket to replace

them with credential-based socket operations, by inserting

a Protected Data Layer (PDL) protocol header. After this

I/O interception is complete, applications communicate

with each other using what appear to them as original I/O

system-calls. The only requirement for the sending side

application is to specify the meta-information about the

protected data object prior to the write operations. More

details appear in the implementation section.

4. Additional implementation detail

The PDP prototype is based on the Linux 2.4 kernel.

The Capability Distribution Server and the Authentication

Manager Server run on an independent host as regular

applications. The Credential Manager Module (CMM) is

a kernel module in each of the node participating in the

Protected Data Path except that it is optional on the client

machine. The CMM provides APIs for applications to

bind credentials to the I/O channels established by

applications, thereby turning unprotected channels into

Protected Data Paths.

4.1. Credential structure

A credential encodes the user’s access rights on a

specific protected data type. It has four parts: the data

type, the owner, the list of permitted operations, and the

digital signature. As illustrated in Figure 3, jointly, the

credential issuer and the credential type descriptor

uniquely specify the type of the protected data object. In

addition to the type descriptor, we include some type-

dependent information inside the credential. For example,

for the type ‘camera captured data’ such information may

include the dimension and format of the image. Such

information may be critical to the operations specified in

the credential.

The owner of the credential is defined by a process

identifier if the credential resides in the same node as the

application, or by a TCP connection descriptor if a remote

CMM is involved. For security reasons, every time the

application domain presents the credential reference

number, the CMM will use the owner information to

match the caller.

The other part of the credential is a collection of

operations that define how the application can view this

data type. An application may acquire a list of all

operations inside a credential and then choose the proper

operations when making a request for a protected data

object, or such operations may be synthesized from

declarative specifications. Among the list of operations,

there will be one default operation defined for the case

when a user has no preferences. Also, for some

credentials, there will be some operations that ‘must’ be

applied to the object. Such operations may be used, for

example, to filter out certain information the user should

not see.

The digital signature is the mechanism used to prevent

credential forgery. While highly secure cryptography is

expensive, we only do a one time check when the CMM

first receives a credential. The reference to the credential

by an application does not incur this integrity check, thus

removing this expensive task from the data delivery path.

Also, the credential exchange between CMMs on a trusted

path does not require credential verification, either. In our

prototype, we calculate the MD5 hash of the credential,

and then encrypt it with the private key of the credential

issuer. Assuming that the CMM knows the public key of

the credential issuer, it can decrypt the signature to check

the integrity of the credential.

4.2. Credential examples

We introduce two types of credentials, one restriction-

based, the other reference-based. The purpose of the

former is to limit the content an end user can see, whereas

the latter is for proxy-type applications. Restriction-based

credentials are simple. The main components of a

restricted-based credential are a group of operations that

will tailor the data for end users, by removing sensitive

parts. Toward that end, a special Full-Access credential is

assigned to every trusted kernel domain in which the

CMM is installed.

Reference-based credentials permit an application to

‘peek’ into the data object to retrieve relevant meta-

information, but the application cannot touch the actual

data. Instead, the data object is stored in some

inaccessible place, such as the KCache introduced later.

An application with reference-only credentials still uses

regular ‘read’ system calls, but such reads only return

some reference token to the data object. The token

behaves just like a regular data object. The application

can pass the referenced data object to another protection

domain using this token (if the target domain owns the

proper credentials). This involves a translation of the

token to an actual data object in the trusted OS kernel

domain. Or, the application may cache the token for future

access to the data object it references. The web proxy

cache application is an example for such usage of

reference-based credentials.

Struct OwnerInfo {
 union {
 Process Identifier;
 TCP Connection {source address/port,
 destination address/port};
 };
};
Struct Operation {
 CHAR[32] Operation Name;
 INT Operation Type;
 CHAR[] Operation Payload {

 ECode or

 Binary Code or

 Service Name/Location
 };
};
Struct Credential {
 INT Size;
 CHAR[32] Credential Issuer;
 CHAR[32] Credential Type
 Descriptor;
 CHAR[64] Type Dependent
 Information;
 OwnerInfo Owner;
 INT N: Number of Operations;
 Operation*[N] Pointers to Operation;
 Operation* Default Operation;
 Operation* Must Apply Operation;
 CHAR[] Data of All Operations;
 CHAR[32] Digital Signature;
};

Figure 3. Credential structure

4.3. I/O interception

The PDP mechanism enforces the capability check on

I/O channels between protection domains by intercepting

all I/O system calls. This is done by mapping such calls to

function pointers inside sock or file structures. By

replacing those pointers, we can redirect all read or write

calls to a special PDP handler.

To better understand how I/O channels are intercepted,

let us make clear what kind of data is transferred between

protection domains. In distributed applications, a message

usually contains three parts. The header/trailer provide

meta-information, and the data portion carries the actual

data object. For example, the response to a HTTP Get

request may consist of a HTTP header and the content of

the requested file.

Assume that both the sending and receiving sides have

CMMs installed. We insert a Protected Data Layer (PDL)

to describe the data object being transferred by the

Protected Data Path. The PDL header contains type

information about the data object, the protocol

information of the message, and some data-dependent

fields in the protocol header and trailer. We request the

sending side application to provide the above information

as described in Figure 4 prior to writing any message

containing a protected object to the socket.

The PDL header is used by the CMM in order to split

the protocol header/trailer from the actual data object

contained in a message, so that the credential operation

can be applied to the appropriate data. Also, some

protocols include data-dependent information in the

header or trailer. For example, the HTTP header has a

Content-Length field defining the size of the actual data

object. Because the credential operations can change the

data object, we have to define a Header/Trailer Modifier

to update the protocol header accordingly. This modifier

defines the necessary information to update the field. The

current PDP implementation for HTTP supports only the

data size update.

The interception of I/O channels is enforced at the

moment when the application presents credentials to bind

the I/O channels. We provide an API for the application to

specify what credential reference number it owns and

what communication path (we will use a socket as an

example here) it has set up for receiving the data. The

CMM then translates the reference number to an actual

credential and marks the corresponding socket. Next, it

contacts the CMM located at the other end of the socket

and passes the credential to it via a trusted connection.

The two CMMs then negotiate ‘where’ to apply certain

credentials operations. That decision may depend on the

properties of these operations, such as the resulting

network bandwidth consumption [14], the current trust in

the OS kernels that carry out the operations [25], etc.

Once the I/O channel is bound with a credential, the

client side sends requests to the data owner in the usual

fashion. Upon receiving a request, the data owner

application notifies the CMM that it will transfer a

protected object through a specific socket, with all the

information illustrated in Figure 4. The CMM checks

whether the socket has a correct credential bound to it.

The application then writes the data using a regular write

system call, which is redirected to the PDP code. If this

code establishes that access rights require the execution of

a data object processing handler, then a new data object is

produced. At the same time, the protocol header/trailer is

updated based on the PDL header information. Finally, a

new message including the new PDL header, the updated

header/trailer, and a new data object is passed to the

original I/O write code.

If the credential operation is applied at the receiving

side, then we extract the data object based on PDL header

and produce a new object based on the credential

operation. Next, the protocol header/trailer is updated

accordingly, and that result is passed along with the new

object to the application through the original read call.

4.4. KObject and KCache

The PDP mechanism requires operations to be

performed on data objects in the OS kernel domain.

Toward this end, PDP provides an abstraction that

‘organizes’ the kernel data buffers that contain actual

object data. Figure 5 describes the basic structure of a

Struct Header-Modifier {
 INT Type;
 INT Location, Size, Format;
};
Struct Protected-Data-Layer {
 INT Size;
 CHAR[32] Credential Issuer;
 CHAR[32] Data Type Descriptor;
 INT Size of Message Header;
 INT Size of Message Body;
 INT Size of Message Trailer;
 INT N: Number of Header/Trailer
 Modifiers;
 Header-Modifier[N] Header/Trailer
 Modifiers;
};
Struct Data-On-Transfer {
 Protected-Data-Layer Message
 Descriptor;
 CHAR[] Message {
 Protocol Header;
 Real Data Object;
 Protocol Trailer;
 };
};

Figure 4. Protected data on transfer

KObject and the APIs it provides. Stated simply, a

KObject is a sequential read/write data object represented

by a list of chained memory blocks. Every KObject has a

unique name, and provides an interface for read and write

operations via its embedded function pointers. All kernel

level data processing is based on KObjects. A credential

operation accepts one KObject as input and produces

another one as output. Depending on whether this

operation can operate on the memory block incrementally,

the representation of the KObject can be either one block

of memory or multiple chained blocks.

The lifetime of the KObject is determined at creation

time. Typically, it is limited by the lifetime of the

application that acquires it, but that is not the case for the

proxy cache application. This application operates by

requesting data objects from servers or peers. For

protection purposes, such objects are stored in the kernel

domains as KObjects, and the proxy application uses

reference tokens. Since application may cache this

reference token for future requests even after restart, the

corresponding KObjects should not to be dismissed. This

is achieved by storing such KObjects in the kernel’s

KCache module, developed for purposes like these.

KCache provides basic interfaces for creating, retrieving,

and destroying KObjects. Also, it can perform memory-to

-disk swaps for long term storage or relieving the memory

pressure.

4.5. Discussion

In our current implementation, all data exchanges

through a Protected Data Path are in plain-text mode,

which means that they are subject to eavesdropping, IP

spoofing, TCP hijacking etc. Such threats can be

addressed by inserting a transparent layer for data

encryption into the intercepted I/O channels. An SSL-like

mechanism on top of the intercepted socket connection

can free PDPs from such threats.

Another issue is system integrity. PDPs rely heavily on

the presence of uncompromised OS kernels, and all

machines participating in Protected Data Paths are

required to be trustworthy. Although this may be easy to

achieve if all nodes are owned by the same organization, it

may be difficult if multiple organizations are involved.

One method for addressing this issue is to use the Trusted

Platform Modules [32] specification. We are currently

exploring this by experimenting with future virtualization-

capable processor architectures that follow this

specification.

Our current Linux implementation of PDPs protects

sensitive data from application access by storing it in

kernel address space. Malicious users with root access

rights to the machine can easily spy on the kernel level

data. Our next step is to utilize virtualization techniques

like Xen [33] to shift the PDPs into an isolated VM. By

doing so, we can (1) fully isolate the protected data from

the applications, (2) reduce the risk of kernel level

operations of the credential check, and (3) provide the

guarantee of system integrity at the hypervisor level.

5. Applications

Applications that can benefit from Protected Data

Paths have several characteristics. First, sensitive

information must be exchanged between different

application components. Second, there must be

application components that need not have detailed

knowledge about the actual data being exchanged in order

to handle such exchanges, an example being data relaying

and caching. PDPs are important in this context when

there are application components that are not fully

trustworthy, or when there is reluctance or there are legal

reasons for not investing such trust. For example, the HL7

hub in a health information system handles message

exchanges between the IT subsystems in different

departments. Such software only needs to know the basic

rules of message routing. It need not see the actual patient

transcript containing private information.

Struct MemBolck {
 CHAR* Buffer;
 MemBolck* Next;
};
Struct WriteDescriptor{
 VOID* Last Block for
 Write;
 INT Offset inside Block;
};
Struct ReadDescriptor{
 VOID* Last Block for Read;
 INT Offset inside Block;
};
Struct KObject {
 CHAR[32] Name;
 RW_Lock Lock;
 FLAG Flags;
 TIME Expiration Date;
 Union {
 MemBlock* FirstBlock;
 Page* FirstPage;
 }u;
 INT Size, ExpectSize;
 WriteDescriptor WritePosition;
 …… Other Minor Members;
 int (*iovec_for_read)(iovec* vec,
 ReadDescriptor* pos, int size);
 int (*iovec_for_write)(iovec* vec,
 int size);
 void (*commit_write)(int written);
};

Figure 5. KObject structure

In this section, we examine a system that delivers

digital content to end-users. It utilizes the Apache HTTP

Servers and Squid Web Proxy Caches to form a content

distribution network. Considering the complexity of the

Apache and Squire software, we do not want to expose

some of the digital content to them. Instead, we enhance

them with PDPs. This only requires small modifications.

For instance, we only added around 150 lines of code to

the Squid Proxy Cache to use PDPs.

Here, all protected digital content is represented by

regular URLs. The client side application acquires

credentials from a Capability Distribution Server. It then

sets up a Protected Data Path to the proxy or server. The

Apache and Squid applications controlling content

delivery on the path only have reference-based credentials

to the data being exchanged. As a result, these potentially

untrusted applications cannot access any of the sensitive

data being exchanged.

5.1. End user application

There are standalone Capability Distribution Servers

that authorize end users and issue credentials to the end

user application. The client side application sets up a

socket connection to either the Apache Server or the

Squid Web Proxy Cache, and then binds credentials to the

socket. It sends a request for digital content using the

HTTP Get command on the socket connection. To ensure

that the server side knows that this request is for a

protected data object, a new HTTP header field

‘Credential: Enable’ is inserted into the request.

5.2. Apache

We modify Apache slightly to be able to serve

protected digital content, with the assumption that all data

is stored securely, i.e., in a location not directly accessible

to the server. The storage nodes present a VFS-like

interface. For data movement, the Apache server does not

need access to actual data; it need only move the data

object from storage to some outgoing socket connection.

As a result, the CDS assigns only reference-based

credentials to the server. Apache opens the data object

just like a regular file. It then binds the opened file with a

credential. In this step, a KObject is created and the data

is moved from storage to the memory buffers of the

KObject.

There are two ways to move data from the KObject to

the outgoing socket. One way is for Apache to make a

read call, get a reference token to the KObject, and then

treating the reference token as a regular data object and

preparing a HTTP reply based on it. Next, Apache notifies

the CMM about the format of the reply. This helps the

CMM translate the reference token back to the KObject at

write time. The other way is to utilize a sendfile-like call

provided by KCache. With this call, a fast path is set up

between the KObject and the socket to avoid the steps of

KObject to/from reference token.

5.3. Squid

The Squid Web Proxy Cache provides more

functionality than what is explained for the Apache Server

above. Here, when Squid first receives a HTTP Get

request from the client, it will set up a connection to the

backend server or a peer proxy-cache. It then binds its

reference-based credential to the connection. From

Apache's point of view, Squid is no different from a

regular client. However, since our purpose is to relay the

server response to the client and cache the data object if

possible, we apply the credential check and intercept the

I/O call at the Squid side. The full data object is

transferred to the kernel of the machine running Squid.

Now the CMM moves the data into a KObject and

generates a unique reference token. This reference token

is passed to Squid when it tries to read the HTTP

response. The reference token is then wrapped with a new

HTTP header to form a normal HTTP response to the

client. When writing out this response, the token is

translated back to the actual data object.

 Because Squid tries to cache the reference as a normal

data object, the corresponding KObject must be

maintained to have the same lifetime. We use a kernel-

level cache, termed KCache, to organize all such

KObjects. At creation time, a firm expiration date is

specified for its longest possible lifetime. When a

reference token expires in Squid's application-level cache,

Squid should notify KCache to remove the corresponding

KObject. Moreover, KCache swaps the KObject to/from

disk under memory pressure, or at module load/unload

time. Thus, the reference token from Squid and the

KObject from KCache can be consistent at all times.

Another nontrivial issue is how to handle the reading

and writing of a reference token. The CMM generates the

reference token as long as it receives the header of the

HTTP response. When Squid reads in this token, it thinks

it has received all of the data. However, there may still be

incoming data pending on the incoming socket. To deal

with this, the read call will return a special error code

EPENDING if there is still data pending on the incoming

socket. The EPENDING return code provides an event for

Squid to trigger data movement from the socket to the

KObject. Similarly, when Squid sends out a HTTP

response containing a reference token, it may get a ‘false’

successful return. The EPENDING return code will

guarantee that Squid can move all data from the KObject

to the outgoing socket.

6. Experiment

All experimental evaluations are performed on the

Georgia Tech Emulab installation [30], termed netlab.

Experiments use a simulated network with six nodes, as

show in Figure 6. The network includes one node for the

Capability Distribution Server and Authentication

Manager. One node is used for running the Apache HTTP

server, another node for the Squid Web Proxy Cache

server, a node for storing client credentials, and two nodes

for client applications. All nodes are Pentium IV 2.8GHz

machine with Gigabit Ethernet links. There is no artificial

network delay inserted between any two nodes.

We first examine the cost of PDPs related operations

using a micro-benchmark. We then evaluate the PDP-

enhanced versions of Apache and Squid.

6.1. Micro-benchmark

We first measure the basic costs of setting up a

protected data path. Table 1 shows the necessary steps in

sequence. Authentications between CMMs are the

essential to constructing the secure framework. Although

this relies heavily on cryptological methods, the per-node-

pair cost is small. The Capability Distribution Server

authorizes end users and grants them the virtual reference

number of the credentials. The CDS must deliver the

actual credential to a trusted CMM. Delivery and

credential verification costs may vary depending on the

size of the credential. All these steps are per-credential

and can be amortized over the lifetime of the application.

Finally, to use the credential, the application must submit

a request to the CMM for binding the credential to an I/O

channel like a socket. This is a per-connection cost, but

we expect that the user will use the same connection to

request multiple sets of data.

6.2. Apache

We measure both request response time and throughput

for the Apache HTTP Server using protected Data Paths.

Figure 7 compares the response times of the original vs.

modified Apache on different file sizes. As evident from

the figure, the two lines are almost identical. The

additional cost of binding credentials to sockets for the

Protected Data Path is significant for small files but

negligible for large files. Moreover, this cost can be

amortized on HTTP persistent connections if users request

multiple sets of data of the same type on one connection.

Figure 8 compares the throughput of the protected vs.

unprotected Apache HTTP servers. Here, a 64-thread

client program sends requests continuously to the server.
Table 1. Preparation cost for a protected data path

Time Cost (microsecond)
Credential Size

Steps
256B 1K 4K 16K 32K

Authentication

between CMMs
 11681.55

Authorization from

CDS
 1347.23

Acquire Credential

from CDS
 609.65

Credential from

CDS to CMM
344.1 375.09 388.4 799.7 970.9

Credential

Verification
38.25 40.82 49.58 84.56 131.43

Bind Credential to

Socket
 502.70

Figure 6. Test bed

Figure 7. Apache request response time

Apache Response Time

0

5

10

15

20

25

30

35

8K 16K 32K 64K 128K 256K 512K 1M 2M

Size (Bytes)

T
im

e
 (

m
s) Original Apache

Protected Path

Bind Credential

Each thread sends a new request immediately after the

previous is complete. We can see that for large files, the

use of PDPs has almost no effects on throughput. For

small files, due to the cost of credential binding and the

in-kernel credential operation, throughput is reduced by

10~20 percent.

6.3. Squid

Evaluations of the Squid proxy have results similar to

those attained for Apache. In these experiments, when the

data object is located in the application cache of Squid (a

cached reference token for the Protected Data Path case),

Squid serves the request locally. Both implementations

present similar results, as shown in Figure 9. When the

data object is not located in the object cache of Squid, it

contacts the server for the data. We see from Figure 10

that PDPs are worse for small files, but better for large

files. This is because of reduced memory copying and

reduced overheads for the KCache vs. application-level

caching [14,23]. When dealing with large files, the in-

kernel data path uses one less memory copy, thus

improving response time by up to 25% in our

measurements.

7. Conclusion

We have presented a mechanism to create a Protected

Data Path for controlling the exchanges of sensitive data.

It separates applications into multiple protection domains

and assigns credentials to each domain based on their

needs. Untrusted applications like third-party proxies with

PDP enhancement can be inserted into the data path if

running on a trusted system. In-kernel credential checks

guarantee that such applications can only access data

based on the credentials they own. We have also

described an example in which PDPs are used by an

untrusted proxy-cache to cache and deliver sensitive data

without compromising the security policy.

Our future work will extend the notion of PDPs to

provide differentiated data protection at kernel level using

credential operations. In addition, by using modern

virtualization techniques, path data will be further isolated

from untrusted applications and/or from potentially

compromised operating system kernels.

REFERENCE

[1] Akamai. www.akamai.com

[2] Squid Web Proxy Cache. www.squid-cache.org

[3] Apache HTTP Server. httpd.apache.org

[4] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.

Schwartz, and K. J. Worrell. A Hierarchical Internet Object

Apache Throughput

0

5

10

15

20

25

30

35

40

45

50

8K 16K 32K 64K 128K 256K 512K 1M 2M

Size (bytes)

R
e
q

u
e
st

 R
a
te

 (
x

1
0

0
/s

e
c
)

Original Apache

Protected Path

Figure 8. Apache throughput on different file Size

Figure 9. Squid request response time on cache hit

Squid Response Time (CacheHit)

0

5

10

15

20

25

8K 16K 32K 64K 128K 256K 512K 1M 2M

Size (bytes)

T
im

e
 (

m
s) Orignial Squid

Protected Path

Bind Credential

Squid Response Time (CahceMiss)

0

5

10

15

20

25

30

35

8K 16K 32K 64K 128K 256K 512K 1M 2M

Size (bytes)

T
im

e
 (

m
s) Original Squid

Protected Path

Bind Credential

Figure 10. Squid request response time on cache miss

Cache. In Proceedings of the USENIX Technical

Conference, pp. 153-163, San Diego, California, January

1996.

[5] JBOSS Application Server. www.jboss.com

[6] IBM Websphere Application Server. www.ibm.com

[7] Health Level Seven http://www.hl7.org/

[8] E. Cohen and D. Jefferson. Protection in the Hydra

Operating System. In Proceedings of the fifth ACM

symposium on Operating systems principles. November,

1975.

[9] T. Y. C. Woo and S. S. Lam. Authentication for Distributed

Systems. In ACM Computer, Volume 25, Issue 1. January

1992.

[10] M. Kaminsky, G. Savvides, D. Mazieres, M. F. Kaashoek.

Decentralized User Authentication in a Global File System.

In Proceedings of the 9th ACM Symposium on Operating

Systems Principles. October 2003.

[11] P. Widener, K. Schwan, and F. Bustamante. Differential

Data Protection in Dynamic Distributed Applications. In

Procedings of the 2003 Annual Computer Security

Applications Conference, Las Vegas, Nevada, December

2003.

[12] I. Ganev, K. Schwan, and G. Eisenhauer. Kernel Plugins:

When A VM Is Too Much. In the 3rd Virtual Machine

Research and Technology Symposium, May, 2004.

[13] G. Eisenhauer and K. Schwan. The ECho Event Delivery

System. College of Computing Technical Reports GIT-CC-

99-08

[14] J. Kong and K. Schwan. KStreams: Kernel Support for

Efficient Data Streaming in Proxy Servers. In Proceedings

of the International Workshop on Network and Operating

Systems Support for Digital Audio and Video (NOSSDAV

'05). June 2005

[15] I. Foster, C. Kesselman, G. Tsudik and S. Tuecke. A

security Architecture for Computational Grids. In

Proceedings of the 5th ACM Conference on Computer and

Communications Security. 1998.

[16] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K.

Jackson and A. Essiari. Certificate-based Access Control

for Widely Distributed Resources. In Proceedings of the

Eight Usenix Security Symposium, August, 1999

[17] G. Stoker, B. S. White, E. Stackpole, T. J. Highley and M.

Humphrey. Toward Realizable Restricted Delegation in

Computational Grids. In Proceedings of the International

Conference on High Performance Computing and

Networking Europe (HPCN Europe 2001) , Amsterdam,

Netherlands, June 2001.

[18] B. Lampson, M. Abadi, M. Burrows and E. Wobber.

Authentication in Distributed Systems: Theory and

Practice. In ACM Transactions on Computer Systems, Vol

10, Issue 4. November 1992.

[19] A. O. Freier, P. Karlton and P. C. Kocher. The SSL

Protocol. Internet Draft, March 1996.

[20] Data Encryption Standard. Federal Information Processing

Standards Publication 46-2. December 1993.

[21] Rivest, R., Shamir, A. and L. Adleman, A Method for

Obtaining Digital Signatures and Public-Key

Cryptosystems, Communications of the ACM, February

1978.

[22] D. Maltz and P. Bhagwat. TCP Splicing for Application

Layer Proxy Performance. IBM Research Report RC

21139, March, 1998.

[23] M. Rosu and D. Rosu. An Evaluation of TCP Splice

Benefits in Web Proxy Servers. In the 11th International

World Wide Web Conference. May 2002.

[24] A. Luotonen. Tunneling TCP based protocols through Web

proxy servers. Internet Draft. August 1998.

[25] R. Viswanath, M. Ahamad and K. Schwan. Harnessing

Non-dedicated Wide-area Clusters for On-demand

Computing. IEEE International Conference on Cluster

Computing (Cluster 2005). September 2005.

[26] J. G. Steiner, B. Clifford Neuman, and J.I. Schiller.

Kerberos: An Authentication Service for Open Network

Systems. In Proceedings of the Winter 1988 Usenix

Conference. February, 1988.

[27] G. Eisenhauer, F. E. Bustamante, and K. Schwan. A

Middleware Toolkit for Client-initiated Service

Specialization. ACM SIGOPS Operating Systems Review.

July 2001

[28] J. Galbraith and O. Saarenmaa. SSH File Transfer Protocol.

Internet Draft, June 2005.

[29] T. Ylonen and C. Lonvick. SSH Protocol Architecture.

Internet Draft, March 2005.

[30] Georgia Tech Netbed Based on Emulab.

www.netlab.cc.gatech.edu

[31] Patrick Widener. Dynamic Differential Data Protection for

High-Performance and Pervasive Applications. Ph.D.

Thesis, Georgia Institute of Technology, July 2005.

[32] Trusted Computing Group.

https://www.trustedcomputinggroup.org/home

[33] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauery, I. Pratt, and A. Wareld. Xen and the

Art of Virtualization. In Proceeding of the 19th ACM

Symposium on Operating Systems Principles. October,

2003.

