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Abstract 
 The ability to share sensitive information is a key 

necessity for today's distributed enterprise applications. 

This paper presents a kernel-level mechanism for 

controlling the exchanges of sensitive data, termed 

Protected Data Paths. The mechanism permits only 

machines with suitable credentials to cache and 

manipulate protected data, and it gives protection 

domains access to such data only as per their rights 

specified in the capabilities they possess. Our 

implementation of Protected Data Paths in Linux 

operates by creating protected communication channels 

between participating machines. Path establishment 

requires such machines' kernel domains to have suitable 

credentials. Data transferred via such paths is made 

available to application-level domains only as per their 

current data access capabilities, guaranteed by kernel-

level supervision of such data accesses. 

 

1. Introduction 

With today's highly connected computing systems and 

their web service-based programming infrastructures, it 

has become common for applications to be constructed as 

sets of components developed by different companies and 

run on machines owned and operated by multiple 

organizations and/or application participants. For 

instance, for efficient content delivery to large numbers of 

web clients, web servers routinely interact with backend 

machines via intermediate proxy caches, and additional 

data caching occurs in edge servers, to better deal with the 

heterogeneous nature of the Internet [1,2,3,4]. Further, 

internally, web service infrastructures like JBOSS [5] or 

Websphere [6] make extensive use of results and 

parameter caching on intermediate machines, to offload 

backends that often constitute the bottlenecks in multi-tier 

web service applications. 

An issue with the extensive data caching and data 

sharing ongoing in distributed infrastructures is that these 

systems provide few or no guarantees to end users about 

the privacy of the data being exchanged. That is, when an 

application-level proxy caches data on its machine, end 

users are not protected from potential violations in data 

access by such third parties. The unfortunate outcomes are 

(1) a lack of control over data movement and thus, 

potential violations of data privacy and/or (2) the resulting 

inability for corporations or entities to use efficient web-

based infrastructures for secure data exchanges. Consider, 

for example, a health information system that consists of 

applications owned by different departments. Such a 

system usually deploys a HL7 hub to manage the 

exchanging of patient information in HL7 message format 

[7]. Here, patient data must be shared, privacy must be 

maintained, and in addition, each department should only 

have access to certain portions of the data.  

Unfortunately, for distributed applications with data 

privacy concerns, there now neither exists a way to 

maintain privacy if intermediate proxies are used to 

operate on such data like relaying or caching, nor is there 

a way to differentially protect certain data portions. 

Instead, applications that are involved in sensitive 

information exchanges are assumed to be fully trustworthy 

and thus have full access rights to data. In the health 

information system above, patient information is fully 

exposed to the HL7 hub applications. However, a 

malfunctioning HL7 hub may pass additional information 

to the target users or even disclose information to 

unauthorized parties. Such behavior clearly violates the 

principle of least privilege [8], which states that data 

should be accessible only to those parties that must have 

access to it.  

There are many other examples of applications and 

systems for which stricter controls on data access would 

be desirable. Firewall or proxy applications, for instance, 

should not be able to access actual data content beyond 

what is needed for their tasks, but unfortunately, to attain 

desired high performance, their current implementations 

often violate this principle. Particularly obvious examples 

are the content delivery infrastructures mentioned earlier, 

which routinely use multiple server mirrors and multiple 



layers of proxy caches to attain desired levels of 

performance. 

This paper describes a novel set of operating system 

mechanisms that permit sensitive data to be exchanged 

across different machines so as to follow the principle of 

least privilege. Specifically, the Protected Data Paths 

(PDPs) mechanisms dynamically construct protected data 

delivery paths across the multiple machines used by a 

distributed application. Sensitive data is protected from 

inappropriate access by using different protection 

domains, the kernel domains and application domains, to 

transfer data vs. managing such data exchanges: 

� By providing efficient interfaces between the 

protection domains that transfer data and the ones 

that manage it, data privacy is guaranteed without 

compromising the high performance attained by the 

rich management methods present in current 

distributed systems [2]. In a Linux-based 

implementation of a distributed data cache, the 

operating system kernel (i.e., the kernel domain) 

transfers and store sensitive data, and application 

processes are the domains that manage data 

caching. 

� By controlling how and which portions of data a 

protection domain can access, data privacy 

concerns are met while also enabling diverse ways 

in which data is manipulated. In the Linux 

implementation of PDP-based caching, the kernel 

maintains credentials (i.e., access right information) 

for application-level processes, and all accesses to 

sensitive cached data by application processes 

engender kernel-level access checks. Once moved 

into the application domain, data may be 

manipulated in any way desired. 

� By permitting only trusted machines and their OS 

kernels to participate in a PDP, the integrity 

protected data delivery is guaranteed. 

As indicated above, the Linux implementation of PDPs 

uses a straightforward credential-based implementation of 

capabilities to restrict the data access rights of 

participating machines and also, to delimit the data access 

rights of all protection domains that manipulate the data 

being exchanged. The list of capabilities owned by a 

protection domain completely defines its rights to transfer 

and/or to manipulate sensitive data. Our future 

implementation of the concept will use multiple virtual 

machines running on virtualized execution platforms, 

thereby further isolating path-level data from the parties 

not permitted to directly access or manipulate it. 

Protected Data Paths are designed to deal with both the 

threats of compromised credentials and data delivery 

paths. Ignoring how users are authorized, which is not the 

focus of this paper, the current PDP implementation 

addresses capability forgery by using digitally signed 

credentials. It controls capability reuse by associating a 

capability with a specific end user application (i.e., 

protection domain) in a specific location (i.e., on some 

machine). Finally, capability propagation is prevented by 

never handing out actual capabilities but instead, 

providing only capability references to end user 

applications.  

The Linux implementation of PDPs uses a trusted 

kernel module to performs credential management and 

enforce capability-based data access control. Application 

domains that require access to protected data do so via 

intercepted calls to the kernel domain. No application 

module can access or use data other than what is permitted 

by its capabilities, even if it only acts as a forwarding 

agent. For example, an untrusted proxy cache application 

will receive only reference tokens to the actual data 

objects cached in the kernel domain. The application can 

use these tokens to control caching, including using them 

to service repeated requests for the same object, but it will 

not be permitted to access the object’s contents or to 

change or transform it. Finally, our current 

implementation does not encrypt data, so that it is open to 

attacks like eavesdropping, message alteration, TCP 

hijacking etc. This is easily corrected, by inserting 

additional encryption and decryption actions into data 

exchanges across machines. The intercepted I/O channels 

explained in Section 4 provide a simple way to implement 

encryption. 

The principal application benefiting from the use of 

Protected Data Paths evaluated in this paper performs 

static content serving and caching, using the Apache 

HTTP Server [3] along with the standard Squid [2] Web 

Proxy Cache. Data may be cached at the application level 

if no privacy concerns exist. Protected data is cached in 

the operating system kernel, using a kernel-level data 

cache also constructed in our research. Squid manages 

such kernel-level data through capabilities (i.e., protected 

data references), which, as stated earlier, are maintained 

by the kernel. Many other applications can benefit from 

the data privacy support offered by PDPs. One application 

currently being developed by our group is the 

aforementioned manipulation of patient data, by HL7 hub 

applications. 

Experimental evaluations of the PDP concept and 

implementation demonstrate its key property: by using 

PDPs, the rich methods offered by web-based data 

transport and manipulation may be exploited while at the 

same time, gaining the ability to enforce application-

specific data privacy constraints. For Apache, no effects 

are observed for request response times and throughput 

for files larger than 256K. For Squid, the PDP 

mechanisms results in small improvement in response 

time due to its use of the in-kernel data path. For smaller 

sized files, the additional credential-related operation in 



the kernel result in small increases in response time and 

decreases in throughput. However, these costs can be 

amortized if the same PDP is used for multiple requests.  

The next section compares Protected Data Paths with 

alternative methods. The detailed design of PDPs is 

presented in Section 3. Section 4 describes the 

implementation of Linux-based PDPs, and their usage 

with an Apache HTTP Server and a Squid Web Proxy 

Cache is elaborated in Section 5. Section 6 reports 

measurements of experimental results with micro-

benchmarks, with Apache, and with Squid. Section 7 

concludes the paper and reports on future directions.  

2. Related work 

Common ways protecting information in a distributed 

system are authentication [9,10,18,26] and encryption 

[20,21]. Here, a sender and a recipient authenticate each 

other using some handshake protocol, thereby establishing 

a secure communication channel. A session key is used to 

encrypt all future messages for security purpose. 

Examples include the HTTPS protocol on top of SSL [19] 

and SFTP on top of SSH [29] etc. 

Methods like those described above are point-to-point 

because of their mutual-trust requirement. Even some 

secure group communication middleware or secure 

publish/subscribe systems [27,31] are built on top of 

point-to-point connections, where each connection is 

secured by the above mechanisms. In order to extend the 

data path to multiple nodes, for scalability, additional 

trusted nodes must be inserted into the data path, but 

finding such nodes may not be trivial. SSL tunneling [24] 

addresses this issue, but it only allows the Proxy to handle 

an SSL connection in transparent forwarding mode, 

thereby unable to perform other offloading tasks, such as 

data caching. In comparison to such work, PDPs provide a 

direct way of inserting into and then using additional 

trusted nodes with the distributed platforms used by large-

scale applications. Furthermore, PDPs can deal with both 

the secure applications reviewed above and the large set 

of untrusted applications commonly used in the large-

scale enterprise systems. 

A fundamental point about PDPs is that essentially, this 

concept generalizes upon the extensive prior practice of 

delegating certain data transfer tasks to the operating 

system kernel, as with TCP Splicing [14,22], the sendfile 

system call, or kernel-level http servers. While prior work 

has focused on the performance advantages of such 

delegation, PDPs combine such performance goals with 

capability-based methods for controlling application 

access to ongoing data transfers.  

While PDPs apply the capability model [8] to 

distributed systems, we do not innovate in the domains of 

authentication and authorization, like [16]. Instead, we 

simply adopt a framework that is sufficient to support the 

PDP idea. Further, while the PDP approach to protection 

is somewhat similar to the restricted delegation concept in 

Grid Computing [15,17], for restricted delegation, the 

crucial issue is to determine what access rights the end 

users should grant to certain intermediate nodes. This is 

necessary because the implementations of applications 

like Apache/Squid still retain full access rights to the data 

being transferred. In contrast, the PDP model separates 

each participating node into two parts: a trusted domain 

(e.g., the OS kernel) and the application domain. Users 

can give full access to the trusted domain (if desired), and 

at the same time, they can give the application domain 

only the limited access rights needed for data management 

or manipulation. 

3. Design of the data delivery model 

This section presents the capability-based data delivery 

model used to realize Protected Data Paths. The model 

addresses potentially compromised capabilities and 

compromised data delivery paths. The model is designed 

to isolate the management of data exchanges from the 

exchanges themselves. It also carries out security checks 

via trusted modules in the system kernel. 

3.1. Data delivery path 

Information flows in distributed systems typically 

travel through multiple application components before 

reaching their destinations. Figure 1 illustrates a typical 

data delivery path involving a server application that 

provides the data, a proxy application running at a 

gateway, and a viewer application displaying data to an 

end user. This delivery path may be viewed as connecting 

multiple protection domains via inter-domain channels. 

For instance, in Figure 1, the server, proxy, and viewer 

Figure 1. Data delivery path 



applications are all different protection domains. 

Additional independent domains are those used by OS 

subsystems like the virtual file system and the network 

subsystem. All such domains exchange data with each 

other via system calls and socket connections. 

We base data protection on the capability model 

originally proposed in Hydra [8]. Each protection domain 

owns a list of capabilities that describe its access rights to 

protected information. Data can be transferred from one 

domain to another only when the receiving side presents 

proper capabilities. Data access control is enforced on the 

inter-domain communication channel. 

Given this model, four steps are involved in setting up 

a Protected Data Path. First, the client side application 

interacts with a Capability Distribution Server (CDS) on 

behalf of its end users. Using standard authorization and 

authentication procedures, the CDS generates proper 

credentials in response to such client requests. Second, the 

CDS stores the resulting credentials in the Credential 

Manager Module (CMM) resident in a trusted kernel 

domain while the client receives only credential 

references. Third, when the client side application 

establishes a connection to some server, it associates with 

this connection its credential references. Finally, for all 

data items exchanged across this client-server connection, 

credential checks are enforced automatically. 

3.2. Credential manager authentication 

The CMM is an essential part of all nodes participating 

in a Protected Data Path, except for the end point at the 

client side. Two CMMs authenticate each other through 

an Authentication Manager Server (AMS) [9], as 

illustrated in Figure 2a. A long-term secure connection is 

established for two CMMs after the authentication. We 

assume that the CMM will not be compromised after 

authentication because it resides on a trusted kernel.  

Further, the CMM remains trustworthy after 

authentication as long as the secure connection is not 

broken. Since the trust properties based on this 

authentication are transitive, all CMMs in a distributed 

system can be linked via a trusted overlay network, and all 

messages exchanged between two CMMs via such an 

overlay are ‘safe’, that is, their relay via intermediate 

overlay nodes uses only trusted entities. The purpose of 

establishing such longer-term trusted connections is to 

avoid the costly authentication steps for every 

communication between each two CMMs along a trusted 

path. The purpose of establishing some well-defined 

overlay across which all trusted data exchanges take place 

is to limit the number of connections of which each CMM 

must be aware. We note that the same techniques may also 

be used to establish trusted links across multiple CDSes. 

3.3. Credential acquisition 

To limit direct user access to credentials, protection 

domains other than CMMs cannot access credentials. 

Instead, they use references to credentials. Given this fact, 

credential acquisition (i.e., the acquisition of references to 

credentials) proceeds as illustrated in Figure 2b. First, the 

client application locates a CMM implementing the 

capability API. This CMM might reside on the same node 

as the client or on a remote node, depending on the client 

application’s execution environment. In the latter case, the 

client must first establish a reliable connection to the 

CMM. For the identified CMM, the client next sends the 

request for credentials to the CDS, along with the CMM’s 

location. 

The CDS generates a credential upon receiving the 

client’s request. This credential is first delivered to the 

CMM specified in the client request, again along with the 

location of the client. Next, the CMM verifies the integrity 
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of the credential, stores it in a Credential Table, and 

generates a locally unique credential reference number. 

The credential table entry is associated with the client 

process if the client process is on the same node; or with 

the connection between the CMM and the client process if 

both are on different nodes. The lifetime of the credential 

entry is limited by the lifetime of the client process or the 

connection. Moreover, the client can only use the PDP 

interface to access the actual credential, and only the 

associated client can use this reference number. This 

prevents the improper propagation of credentials. Finally, 

the CMM sends back the credential reference number to 

the CDS, which then forwards it to the client. 

As stated earlier, whenever some domain wishes to 

access data being exchanged along a Protected Data Path, 

it presents its credential reference via a system call to the 

local CMM or via a RPC on the previously mentioned 

connection to the remote CMM. This reference is then 

translated by the CMM to an actual credential. Several 

advantages of using credential references rather than 

actual credentials are that (1) by limiting access to 

credentials, we avoid the risk of improper credential 

propagation, and (2) because a client only has a reference, 

it must use the API provided by the CMM to access the 

actual data being exchanged across the path. (3) The CDS 

can directly interact with CMMs to revoke a credential, if 

necessary, without client involvement. A subsequent use 

of a revoked credential by a client would result in the 

receipt of an appropriate error message. 

3.4. Categories of protected data 

For management purposes, all sensitive data objects 

are categorized by types, and all credentials are associated 

with types rather than with individual data items [31]. 

Thus, a credential can be viewed as the user's access rights 

to some special type associated with the data being 

exchanged along a protected path. The implementation of 

credentials reflects this fact, where each credential 

contains both a simple type descriptor identifying the type 

of data to which it refers and a collection of access rights 

to this type of data. 

Since there are many choices in how some data 

element may be accessed (i.e., which fields, which 

combinations of fields, which sums of which element 

entries, etc.), we represent access rights as operations (i.e., 

as code) that when applied to the data element, provide 

only the information permitted by this capability. This 

operational encoding of access rights ‘inside’ each 

credential affords us with considerable flexibility. Stated 

more explicitly, the following choices exist for how this 

may be implemented: a credential may directly specify 

some piece of code to be applied to the data, or instead, it 

may name some kernel-level service implementing this 

operation. Such code may be written in some high-level 

language that is compiled dynamically [13], or it may be 

some executable binary code [12]. The code may reside 

‘in’ the credential, or it may be acquired later through a 

code repository [11]. For complex operations, the 

credential may just indicate some service name, and the 

capability check module will then automatically link this 

named service into the protected data delivery path. 

3.5. Capability-bound I/O channel 

Protected Data Paths require the association of 

capabilities with data paths, i.e., with I/O channels. 

Toward this end, we leverage the fact that operating 

system kernels already maintain I/O channels like file 

descriptors and socket connections on behalf of 

applications. We use a socket connection to demonstrate 

how this association and the implied capability checks are 

carried out. Other I/O operations, like those for disks, 

follow a similar pattern. 

To establish a capability-bound socket channel, two 

applications first create a normal socket connection. Next, 

the request side application contacts the CMM storing the 

actual credential. The CMM translates the provided 

reference number into the actual credential and delivers it 

to the remote CMM on the target node through a trusted 

path. The CMM then determines where to apply the 

credential check on the protected data object, dependent 

upon whether there are CMMs on both sides and/or the 

network environment. Once determined, it intercepts all 

proper read/write system calls to the socket to replace 

them with credential-based socket operations, by inserting 

a Protected Data Layer (PDL) protocol header. After this 

I/O interception is complete, applications communicate 

with each other using what appear to them as original I/O 

system-calls. The only requirement for the sending side 

application is to specify the meta-information about the 

protected data object prior to the write operations. More 

details appear in the implementation section. 

4. Additional implementation detail 

The PDP prototype is based on the Linux 2.4 kernel. 

The Capability Distribution Server and the Authentication 

Manager Server run on an independent host as regular 

applications. The Credential Manager Module (CMM) is 

a kernel module in each of the node participating in the 

Protected Data Path except that it is optional on the client 

machine. The CMM provides APIs for applications to 

bind credentials to the I/O channels established by 

applications, thereby turning unprotected channels into 

Protected Data Paths. 



4.1. Credential structure 

A credential encodes the user’s access rights on a 

specific protected data type. It has four parts: the data 

type, the owner, the list of permitted operations, and the 

digital signature. As illustrated in Figure 3, jointly, the 

credential issuer and the credential type descriptor 

uniquely specify the type of the protected data object. In 

addition to the type descriptor, we include some type-

dependent information inside the credential. For example, 

for the type ‘camera captured data’ such information may 

include the dimension and format of the image. Such 

information may be critical to the operations specified in 

the credential. 

The owner of the credential is defined by a process 

identifier if the credential resides in the same node as the 

application, or by a TCP connection descriptor if a remote 

CMM is involved. For security reasons, every time the 

application domain presents the credential reference 

number, the CMM will use the owner information to 

match the caller. 

The other part of the credential is a collection of 

operations that define how the application can view this 

data type. An application may acquire a list of all 

operations inside a credential and then choose the proper 

operations when making a request for a protected data 

object, or such operations may be synthesized from 

declarative specifications. Among the list of operations, 

there will be one default operation defined for the case 

when a user has no preferences. Also, for some 

credentials, there will be some operations that ‘must’ be 

applied to the object. Such operations may be used, for 

example, to filter out certain information the user should 

not see. 

The digital signature is the mechanism used to prevent 

credential forgery. While highly secure cryptography is 

expensive, we only do a one time check when the CMM 

first receives a credential. The reference to the credential 

by an application does not incur this integrity check, thus 

removing this expensive task from the data delivery path. 

Also, the credential exchange between CMMs on a trusted 

path does not require credential verification, either. In our 

prototype, we calculate the MD5 hash of the credential, 

and then encrypt it with the private key of the credential 

issuer. Assuming that the CMM knows the public key of 

the credential issuer, it can decrypt the signature to check 

the integrity of the credential. 

4.2. Credential examples 

We introduce two types of credentials, one restriction-

based, the other reference-based. The purpose of the 

former is to limit the content an end user can see, whereas 

the latter is for proxy-type applications. Restriction-based 

credentials are simple. The main components of a 

restricted-based credential are a group of operations that 

will tailor the data for end users, by removing sensitive 

parts. Toward that end, a special Full-Access credential is 

assigned to every trusted kernel domain in which the 

CMM is installed. 

Reference-based credentials permit an application to 

‘peek’ into the data object to retrieve relevant meta-

information, but the application cannot touch the actual 

data. Instead, the data object is stored in some 

inaccessible place, such as the KCache introduced later. 

An application with reference-only credentials still uses 

regular ‘read’ system calls, but such reads only return 

some reference token to the data object. The token 

behaves just like a regular data object. The application 

can pass the referenced data object to another protection 

domain using this token (if the target domain owns the 

proper credentials). This involves a translation of the 

token to an actual data object in the trusted OS kernel 

domain. Or, the application may cache the token for future 

access to the data object it references. The web proxy 

cache application is an example for such usage of 

reference-based credentials. 

Struct OwnerInfo { 
   union { 
        Process Identifier; 
        TCP Connection {source address/port,  
          destination address/port};  
   }; 
}; 
Struct Operation { 
    CHAR[32]    Operation Name; 
    INT         Operation Type; 
    CHAR[]      Operation Payload { 

                    ECode or 

                    Binary Code or 

                    Service Name/Location  
    }; 
}; 
Struct Credential { 
    INT             Size; 
    CHAR[32]        Credential Issuer; 
    CHAR[32]        Credential Type 
                        Descriptor; 
    CHAR[64]        Type Dependent  
                        Information; 
    OwnerInfo       Owner; 
    INT             N: Number of Operations;
    Operation*[N]   Pointers to Operation; 
    Operation*      Default Operation; 
    Operation*      Must Apply Operation; 
    CHAR[]          Data of All Operations; 
    CHAR[32]        Digital Signature; 
}; 

 

Figure 3. Credential structure 



4.3. I/O interception 

The PDP mechanism enforces the capability check on 

I/O channels between protection domains by intercepting 

all I/O system calls. This is done by mapping such calls to 

function pointers inside sock or file structures. By 

replacing those pointers, we can redirect all read or write 

calls to a special PDP handler. 

To better understand how I/O channels are intercepted, 

let us make clear what kind of data is transferred between 

protection domains. In distributed applications, a message 

usually contains three parts. The header/trailer provide 

meta-information, and the data portion carries the actual 

data object. For example, the response to a HTTP Get 

request may consist of a HTTP header and the content of 

the requested file. 

Assume that both the sending and receiving sides have 

CMMs installed. We insert a Protected Data Layer (PDL) 

to describe the data object being transferred by the 

Protected Data Path. The PDL header contains type 

information about the data object, the protocol 

information of the message, and some data-dependent 

fields in the protocol header and trailer. We request the 

sending side application to provide the above information 

as described in Figure 4 prior to writing any message 

containing a protected object to the socket. 

The PDL header is used by the CMM in order to split 

the protocol header/trailer from the actual data object 

contained in a message, so that the credential operation 

can be applied to the appropriate data. Also, some 

protocols include data-dependent information in the 

header or trailer. For example, the HTTP header has a 

Content-Length field defining the size of the actual data 

object. Because the credential operations can change the 

data object, we have to define a Header/Trailer Modifier 

to update the protocol header accordingly. This modifier 

defines the necessary information to update the field. The 

current PDP implementation for HTTP supports only the 

data size update. 

The interception of I/O channels is enforced at the 

moment when the application presents credentials to bind 

the I/O channels. We provide an API for the application to 

specify what credential reference number it owns and 

what communication path (we will use a socket as an 

example here) it has set up for receiving the data. The 

CMM then translates the reference number to an actual 

credential and marks the corresponding socket. Next, it 

contacts the CMM located at the other end of the socket 

and passes the credential to it via a trusted connection. 

The two CMMs then negotiate ‘where’ to apply certain 

credentials operations. That decision may depend on the 

properties of these operations, such as the resulting 

network bandwidth consumption [14], the current trust in 

the OS kernels that carry out the operations [25], etc. 

Once the I/O channel is bound with a credential, the 

client side sends requests to the data owner in the usual 

fashion. Upon receiving a request, the data owner 

application notifies the CMM that it will transfer a 

protected object through a specific socket, with all the 

information illustrated in Figure 4. The CMM checks 

whether the socket has a correct credential bound to it. 

The application then writes the data using a regular write 

system call, which is redirected to the PDP code. If this 

code establishes that access rights require the execution of 

a data object processing handler, then a new data object is 

produced. At the same time, the protocol header/trailer is 

updated based on the PDL header information. Finally, a 

new message including the new PDL header, the updated 

header/trailer, and a new data object is passed to the 

original I/O write code. 

If the credential operation is applied at the receiving 

side, then we extract the data object based on PDL header 

and produce a new object based on the credential 

operation. Next, the protocol header/trailer is updated 

accordingly, and that result is passed along with the new 

object to the application through the original read call.  

4.4. KObject and KCache 

The PDP mechanism requires operations to be 

performed on data objects in the OS kernel domain. 

Toward this end, PDP provides an abstraction that 

‘organizes’ the kernel data buffers that contain actual 

object data. Figure 5 describes the basic structure of a 

Struct Header-Modifier { 
    INT        Type; 
    INT        Location, Size, Format; 
}; 
Struct Protected-Data-Layer { 
    INT        Size; 
    CHAR[32]   Credential Issuer; 
    CHAR[32]   Data Type Descriptor; 
    INT        Size of Message Header; 
    INT        Size of Message Body; 
    INT        Size of Message Trailer; 
    INT        N: Number of Header/Trailer 
                   Modifiers; 
    Header-Modifier[N]  Header/Trailer 
                            Modifiers; 
}; 
Struct Data-On-Transfer { 
    Protected-Data-Layer     Message  
                                 Descriptor; 
    CHAR[]     Message { 
                   Protocol Header; 
                   Real Data Object; 
                   Protocol Trailer; 
               }; 
}; 
 

Figure 4. Protected data on transfer 



KObject and the APIs it provides. Stated simply, a 

KObject is a sequential read/write data object represented 

by a list of chained memory blocks. Every KObject has a 

unique name, and provides an interface for read and write 

operations via its embedded function pointers. All kernel 

level data processing is based on KObjects. A credential 

operation accepts one KObject as input and produces 

another one as output. Depending on whether this 

operation can operate on the memory block incrementally, 

the representation of the KObject can be either one block 

of memory or multiple chained blocks. 

The lifetime of the KObject is determined at creation 

time. Typically, it is limited by the lifetime of the 

application that acquires it, but that is not the case for the 

proxy cache application. This application operates by 

requesting data objects from servers or peers. For 

protection purposes, such objects are stored in the kernel 

domains as KObjects, and the proxy application uses 

reference tokens. Since application may cache this 

reference token for future requests even after restart, the 

corresponding KObjects should not to be dismissed. This 

is achieved by storing such KObjects in the kernel’s 

KCache module, developed for purposes like these. 

KCache provides basic interfaces for creating, retrieving, 

and destroying KObjects. Also, it can perform memory-to 

-disk swaps for long term storage or relieving the memory 

pressure. 

4.5. Discussion 

In our current implementation, all data exchanges 

through a Protected Data Path are in plain-text mode, 

which means that they are subject to eavesdropping, IP 

spoofing, TCP hijacking etc. Such threats can be 

addressed by inserting a transparent layer for data 

encryption into the intercepted I/O channels. An SSL-like 

mechanism on top of the intercepted socket connection 

can free PDPs from such threats. 

Another issue is system integrity. PDPs rely heavily on 

the presence of uncompromised OS kernels, and all 

machines participating in Protected Data Paths are 

required to be trustworthy. Although this may be easy to 

achieve if all nodes are owned by the same organization, it 

may be difficult if multiple organizations are involved. 

One method for addressing this issue is to use the Trusted 

Platform Modules [32] specification. We are currently 

exploring this by experimenting with future virtualization-

capable processor architectures that follow this 

specification. 

Our current Linux implementation of PDPs protects 

sensitive data from application access by storing it in 

kernel address space. Malicious users with root access 

rights to the machine can easily spy on the kernel level 

data. Our next step is to utilize virtualization techniques 

like Xen [33] to shift the PDPs into an isolated VM. By 

doing so, we can (1) fully isolate the protected data from 

the applications, (2) reduce the risk of kernel level 

operations of the credential check, and (3) provide the 

guarantee of system integrity at the hypervisor level.  

5. Applications 

Applications that can benefit from Protected Data 

Paths have several characteristics. First, sensitive 

information must be exchanged between different 

application components. Second, there must be 

application components that need not have detailed 

knowledge about the actual data being exchanged in order 

to handle such exchanges, an example being data relaying 

and caching. PDPs are important in this context when 

there are application components that are not fully 

trustworthy, or when there is reluctance or there are legal 

reasons for not investing such trust. For example, the HL7 

hub in a health information system handles message 

exchanges between the IT subsystems in different 

departments. Such software only needs to know the basic 

rules of message routing. It need not see the actual patient 

transcript containing private information. 

Struct MemBolck { 
    CHAR*             Buffer; 
    MemBolck*         Next; 
}; 
Struct WriteDescriptor{ 
    VOID*             Last Block for  
                          Write; 
    INT               Offset inside Block; 
}; 
Struct ReadDescriptor{ 
    VOID*             Last Block for Read; 
    INT               Offset inside Block; 
}; 
Struct KObject { 
    CHAR[32]          Name; 
    RW_Lock           Lock; 
    FLAG              Flags; 
    TIME              Expiration Date; 
    Union {  
        MemBlock*     FirstBlock; 
        Page*         FirstPage; 
    }u; 
    INT               Size, ExpectSize; 
    WriteDescriptor   WritePosition; 
    ……                Other Minor Members; 
    int (*iovec_for_read)(iovec* vec,  
           ReadDescriptor* pos, int size); 
    int (*iovec_for_write)(iovec* vec, 
            int size); 
    void (*commit_write)(int written); 
}; 
 

Figure 5. KObject structure 



In this section, we examine a system that delivers 

digital content to end-users. It utilizes the Apache HTTP 

Servers and Squid Web Proxy Caches to form a content 

distribution network. Considering the complexity of the 

Apache and Squire software, we do not want to expose 

some of the digital content to them.  Instead, we enhance 

them with PDPs. This only requires small modifications. 

For instance, we only added around 150 lines of code to 

the Squid Proxy Cache to use PDPs.  

Here, all protected digital content is represented by 

regular URLs. The client side application acquires 

credentials from a Capability Distribution Server. It then 

sets up a Protected Data Path to the proxy or server. The 

Apache and Squid applications controlling content 

delivery on the path only have reference-based credentials 

to the data being exchanged. As a result, these potentially 

untrusted applications cannot access any of the sensitive 

data being exchanged.  

5.1. End user application 

There are standalone Capability Distribution Servers 

that authorize end users and issue credentials to the end 

user application. The client side application sets up a 

socket connection to either the Apache Server or the 

Squid Web Proxy Cache, and then binds credentials to the 

socket. It sends a request for digital content using the 

HTTP Get command on the socket connection. To ensure 

that the server side knows that this request is for a 

protected data object, a new HTTP header field 

‘Credential: Enable’ is inserted into the request.  

5.2. Apache 

We modify Apache slightly to be able to serve 

protected digital content, with the assumption that all data 

is stored securely, i.e., in a location not directly accessible 

to the server. The storage nodes present a VFS-like 

interface. For data movement, the Apache server does not 

need access to actual data; it need only move the data 

object from storage to some outgoing socket connection. 

As a result, the CDS assigns only reference-based 

credentials to the server. Apache opens the data object 

just like a regular file. It then binds the opened file with a 

credential. In this step, a KObject is created and the data 

is moved from storage to the memory buffers of the 

KObject. 

There are two ways to move data from the KObject to 

the outgoing socket. One way is for Apache to make a 

read call, get a reference token to the KObject, and then 

treating the reference token as a regular data object and 

preparing a HTTP reply based on it. Next, Apache notifies 

the CMM about the format of the reply. This helps the 

CMM translate the reference token back to the KObject at 

write time. The other way is to utilize a sendfile-like call 

provided by KCache. With this call, a fast path is set up 

between the KObject and the socket to avoid the steps of 

KObject to/from reference token. 

5.3. Squid 

The Squid Web Proxy Cache provides more 

functionality than what is explained for the Apache Server 

above. Here, when Squid first receives a HTTP Get 

request from the client, it will set up a connection to the 

backend server or a peer proxy-cache. It then binds its 

reference-based credential to the connection.  From 

Apache's point of view, Squid is no different from a 

regular client. However, since our purpose is to relay the 

server response to the client and cache the data object if 

possible, we apply the credential check and intercept the 

I/O call at the Squid side. The full data object is 

transferred to the kernel of the machine running Squid. 

Now the CMM moves the data into a KObject and 

generates a unique reference token. This reference token 

is passed to Squid when it tries to read the HTTP 

response. The reference token is then wrapped with a new 

HTTP header to form a normal HTTP response to the 

client. When writing out this response, the token is 

translated back to the actual data object. 

 Because Squid tries to cache the reference as a normal 

data object, the corresponding KObject must be 

maintained to have the same lifetime. We use a kernel-

level cache, termed KCache, to organize all such 

KObjects. At creation time, a firm expiration date is 

specified for its longest possible lifetime. When a 

reference token expires in Squid's application-level cache, 

Squid should notify KCache to remove the corresponding 

KObject. Moreover, KCache swaps the KObject to/from 

disk under memory pressure, or at module load/unload 

time. Thus, the reference token from Squid and the 

KObject from KCache can be consistent at all times. 

Another nontrivial issue is how to handle the reading 

and writing of a reference token. The CMM generates the 

reference token as long as it receives the header of the 

HTTP response. When Squid reads in this token, it thinks 

it has received all of the data. However, there may still be 

incoming data pending on the incoming socket. To deal 

with this, the read call will return a special error code 

EPENDING if there is still data pending on the incoming 

socket. The EPENDING return code provides an event for 

Squid to trigger data movement from the socket to the 

KObject. Similarly, when Squid sends out a HTTP 

response containing a reference token, it may get a ‘false’ 

successful return. The EPENDING return code will 

guarantee that Squid can move all data from the KObject 

to the outgoing socket. 



6. Experiment 

All experimental evaluations are performed on the 

Georgia Tech Emulab installation [30], termed netlab. 

Experiments use a simulated network with six nodes, as 

show in Figure 6. The network includes one node for the 

Capability Distribution Server and Authentication 

Manager. One node is used for running the Apache HTTP 

server, another node for the Squid Web Proxy Cache 

server, a node for storing client credentials, and two nodes 

for client applications. All nodes are Pentium IV 2.8GHz 

machine with Gigabit Ethernet links. There is no artificial 

network delay inserted between any two nodes.  

We first examine the cost of PDPs related operations 

using a micro-benchmark. We then evaluate the PDP-

enhanced versions of Apache and Squid. 

6.1.  Micro-benchmark 

We first measure the basic costs of setting up a 

protected data path. Table 1 shows the necessary steps in 

sequence. Authentications between CMMs are the 

essential to constructing the secure framework. Although 

this relies heavily on cryptological methods, the per-node-

pair cost is small. The Capability Distribution Server 

authorizes end users and grants them the virtual reference 

number of the credentials. The CDS must deliver the 

actual credential to a trusted CMM. Delivery and 

credential verification costs may vary depending on the 

size of the credential. All these steps are per-credential 

and can be amortized over the lifetime of the application. 

Finally, to use the credential, the application must submit 

a request to the CMM for binding the credential to an I/O 

channel like a socket. This is a per-connection cost, but 

we expect that the user will use the same connection to 

request multiple sets of data. 

6.2.  Apache 

We measure both request response time and throughput 

for the Apache HTTP Server using protected Data Paths. 

Figure 7 compares the response times of the original vs. 

modified Apache on different file sizes. As evident from 

the figure, the two lines are almost identical. The 

additional cost of binding credentials to sockets for the 

Protected Data Path is significant for small files but 

negligible for large files. Moreover, this cost can be 

amortized on HTTP persistent connections if users request 

multiple sets of data of the same type on one connection. 

Figure 8 compares the throughput of the protected vs. 

unprotected Apache HTTP servers.  Here, a 64-thread 

client program sends requests continuously to the server.  
Table 1. Preparation cost for a protected data path 

Time Cost (microsecond) 
Credential Size 

Steps 
256B 1K 4K 16K 32K 

Authentication 

between CMMs 
  11681.55   

Authorization from 

CDS 
  1347.23   

Acquire Credential 

from CDS 
  609.65   

Credential from 

CDS to CMM 
344.1 375.09 388.4 799.7 970.9 

Credential 

Verification 
38.25 40.82 49.58 84.56 131.43 

Bind Credential to 

Socket 
  502.70   

 

Figure 6. Test bed 

Figure 7. Apache request response time 
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Each thread sends a new request immediately after the 

previous is complete. We can see that for large files, the 

use of PDPs has almost no effects on throughput. For 

small files, due to the cost of credential binding and the 

in-kernel credential operation, throughput is reduced by 

10~20 percent.  

6.3. Squid 

Evaluations of the Squid proxy have results similar to 

those attained for Apache. In these experiments, when the 

data object is located in the application cache of Squid (a 

cached reference token for the Protected Data Path case), 

Squid serves the request locally. Both implementations 

present similar results, as shown in Figure 9. When the 

data object is not located in the object cache of Squid, it 

contacts the server for the data. We see from Figure 10 

that PDPs are worse for small files, but better for large 

files. This is because of reduced memory copying and 

reduced overheads for the KCache vs. application-level 

caching [14,23]. When dealing with large files, the in-

kernel data path uses one less memory copy, thus 

improving response time by up to 25% in our 

measurements. 

7. Conclusion 

We have presented a mechanism to create a Protected 

Data Path for controlling the exchanges of sensitive data. 

It separates applications into multiple protection domains 

and assigns credentials to each domain based on their 

needs. Untrusted applications like third-party proxies with 

PDP enhancement can be inserted into the data path if 

running on a trusted system. In-kernel credential checks 

guarantee that such applications can only access data 

based on the credentials they own. We have also 

described an example in which PDPs are used by an 

untrusted proxy-cache to cache and deliver sensitive data 

without compromising the security policy. 

Our future work will extend the notion of PDPs to 

provide differentiated data protection at kernel level using 

credential operations. In addition, by using modern 

virtualization techniques, path data will be further isolated 

from untrusted applications and/or from potentially 

compromised operating system kernels. 

REFERENCE 

[1] Akamai. www.akamai.com  

[2] Squid Web Proxy Cache. www.squid-cache.org  

[3] Apache HTTP Server. httpd.apache.org 

[4] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. 

Schwartz, and K. J. Worrell. A Hierarchical Internet Object 

Apache Throughput

0

5

10

15

20

25

30

35

40

45

50

8K 16K 32K 64K 128K 256K 512K 1M 2M

Size (bytes)

R
e
q

u
e
st

 R
a
te

 (
x

1
0

0
/s

e
c
)

Original Apache

Protected Path

Figure 8. Apache throughput on different file Size 

Figure 9. Squid request response time on cache hit 

Squid Response Time (CacheHit)

0

5

10

15

20

25

8K 16K 32K 64K 128K 256K 512K 1M 2M

Size (bytes)

T
im

e
 (

m
s) Orignial Squid

Protected Path

Bind Credential

Squid Response Time (CahceMiss)

0

5

10

15

20

25

30

35

8K 16K 32K 64K 128K 256K 512K 1M 2M

Size (bytes)

T
im

e
 (

m
s) Original Squid

Protected Path

Bind Credential

Figure 10. Squid request response time on cache miss 



Cache. In Proceedings of the USENIX Technical 

Conference, pp. 153-163, San Diego, California, January 

1996. 

[5] JBOSS Application Server. www.jboss.com 

[6] IBM Websphere Application Server. www.ibm.com  

[7] Health Level Seven http://www.hl7.org/ 

[8] E. Cohen and D. Jefferson. Protection in the Hydra 

Operating System. In Proceedings of the fifth ACM 

symposium on Operating systems principles. November, 

1975. 

[9] T. Y. C. Woo and S. S. Lam. Authentication for Distributed 

Systems. In ACM Computer, Volume 25,  Issue 1. January 

1992. 

[10] M. Kaminsky, G. Savvides, D. Mazieres, M. F. Kaashoek. 

Decentralized User Authentication in a Global File System. 

In Proceedings of the 9th ACM Symposium on Operating 

Systems Principles. October 2003.  

[11] P. Widener, K. Schwan, and F. Bustamante. Differential 

Data Protection in Dynamic Distributed Applications. In 

Procedings of the 2003 Annual Computer Security 

Applications Conference, Las Vegas, Nevada, December 

2003. 

[12] I. Ganev, K. Schwan, and G. Eisenhauer. Kernel Plugins: 

When A VM Is Too Much. In the 3rd Virtual Machine 

Research and Technology Symposium, May, 2004. 

[13] G. Eisenhauer and K. Schwan. The ECho Event Delivery 

System. College of Computing Technical Reports GIT-CC-

99-08 

[14] J. Kong and K. Schwan. KStreams: Kernel Support for 

Efficient Data Streaming in Proxy Servers. In Proceedings 

of the International Workshop on Network and Operating 

Systems Support for Digital Audio and Video (NOSSDAV 

'05). June 2005  

[15] I. Foster, C. Kesselman, G. Tsudik and S. Tuecke. A 

security Architecture for Computational Grids. In 

Proceedings of the 5th ACM Conference on Computer and 

Communications Security. 1998. 

[16] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. 

Jackson and A. Essiari. Certificate-based Access Control 

for Widely Distributed Resources. In Proceedings of the 

Eight Usenix Security Symposium, August, 1999 

[17] G. Stoker, B. S. White, E. Stackpole, T. J. Highley and M. 

Humphrey. Toward Realizable Restricted Delegation in 

Computational Grids. In Proceedings of the International 

Conference on High Performance Computing and 

Networking Europe (HPCN Europe 2001) , Amsterdam, 

Netherlands, June 2001.  

[18] B. Lampson, M. Abadi, M. Burrows and E. Wobber. 

Authentication in Distributed Systems: Theory and 

Practice. In ACM Transactions on Computer Systems, Vol 

10, Issue 4. November 1992. 

[19] A. O. Freier, P. Karlton and P. C. Kocher. The SSL 

Protocol. Internet Draft, March 1996. 

[20] Data Encryption Standard. Federal Information Processing 

Standards Publication 46-2. December 1993. 

[21] Rivest, R., Shamir, A. and L. Adleman, A Method for 

Obtaining Digital Signatures and Public-Key 

Cryptosystems, Communications of the ACM, February 

1978. 

[22] D. Maltz and P. Bhagwat. TCP Splicing for Application 

Layer Proxy Performance. IBM Research Report RC 

21139, March, 1998. 

[23] M. Rosu and D. Rosu. An Evaluation of TCP Splice 

Benefits in Web Proxy Servers. In the 11th International 

World Wide Web Conference. May 2002. 

[24] A. Luotonen. Tunneling TCP based protocols through Web 

proxy servers.  Internet Draft. August 1998. 

[25] R. Viswanath, M. Ahamad and K. Schwan. Harnessing 

Non-dedicated Wide-area Clusters for On-demand 

Computing. IEEE International Conference on Cluster 

Computing (Cluster 2005).  September 2005. 

[26] J. G. Steiner, B. Clifford Neuman, and J.I. Schiller. 

Kerberos: An Authentication Service for Open Network 

Systems. In Proceedings of the Winter 1988 Usenix 

Conference. February, 1988. 

[27] G. Eisenhauer, F. E. Bustamante, and K. Schwan. A 

Middleware Toolkit for Client-initiated Service 

Specialization. ACM SIGOPS Operating Systems Review. 

July 2001 

[28] J. Galbraith and O. Saarenmaa. SSH File Transfer Protocol. 

Internet Draft, June 2005. 

[29] T. Ylonen and C. Lonvick. SSH Protocol Architecture. 

Internet Draft, March 2005. 

[30] Georgia Tech Netbed Based on Emulab. 

www.netlab.cc.gatech.edu 

[31] Patrick Widener.  Dynamic Differential Data Protection for 

High-Performance and Pervasive Applications.  Ph.D. 

Thesis, Georgia Institute of Technology, July 2005. 

[32] Trusted Computing Group. 

https://www.trustedcomputinggroup.org/home 

[33] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. 

Ho, R. Neugebauery, I. Pratt, and A. Wareld.  Xen and the 

Art of Virtualization. In Proceeding of the 19th ACM 

Symposium on Operating Systems Principles. October, 

2003.  


