Quicksort

Based on divide and conquer strategy
Worst case is $\Theta(n^2)$
Expected running time is $\Theta(n \log n)$
An In-place sorting algorithm
Almost always the fastest sorting algorithm

Outline

1. Quicksort

Quicksort

- Divide: Pick some element $A[q]$ of the array A and partition A into two arrays A_1 and A_2 such that every element in A_1 is $\leq A[q]$, and every element in A_2 is $> A[p]$
- Conquer: Recursively sort A_1 and A_2
- Combine: A_1 concatenated with $A[q]$ concatenated with A_2 is now the sorted version of A
The Algorithm

//PRE: A is the array to be sorted, p>=1;
// r is <= the size of A
//POST: A[p..r] is in sorted order
Quicksort (A,p,r){
 if (p<r){
 q = Partition (A,p,r);
 Quicksort (A,p,q-1);
 Quicksort (A,q+1,r);
 }
}

Partition

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size of A, A[r] is the pivot element
//POST: Let A' be the array A after the function is run. Then
// A'[p..r] contains the same elements as A[p..r]. Further,
// all elements in A'[p..res-1] are <= A[r], A'[res] = A[r],
// and all elements in A'[res+1..r] are > A[r]
Partition (A,p,r){
 x = A[r];
 i = p-1;
 for (j=p;j<=r-1;j++){
 if (A[j]<=x){
 i++;
 exchange A[i] and A[j];
 }
 }
 exchange A[i+1] and A[r];
 return i+1;
}

Correctness

Basic idea: The array is partitioned into four regions, x is the pivot

- Region 1: Region that is less than or equal to x (between p and i)
- Region 2: Region that is greater than x (between i + 1 and j – 1)
- Region 3: Unprocessed region (between j and r – 1)
- Region 4: Region that contains x only (r)

Region 1 and 2 are growing and Region 3 is shrinking

Loop Invariant

At the beginning of each iteration of the for loop, for any index k:

1. If p ≤ k ≤ i then A[k] ≤ x
2. If i + 1 ≤ k ≤ j – 1 then A[k] > x
3. If k = r then A[k] = x
Consider the array \((2 \ 6 \ 4 \ 1 \ 5 \ 3)\)

Example

In Class Exercise

- Show Initialization for this loop invariant
- Show Termination for this loop invariant
- Show Maintenance for this loop invariant:
 - Show Maintenance when \(A[j] > x\)
 - Show Maintenance when \(A[j] \leq x\)
Analysis

- The function Partition takes $O(n)$ time. Why?
- Q: What is the runtime of Quicksort?
- A: It depends on the size of the two lists in the recursive calls

Worst Case

- In the worst case, the partition always splits the original list into a singleton element and the remaining list
- Then we have the recurrence $T(n) = T(n-1) + T(1) + \Theta(n)$, which is the same as $T(n) = T(n-1) + \Theta(n)$
- The solution to this recurrence is $T(n) = O(n^2)$. Why?

Best Case

- In the best case, the partition always splits the original list into two lists of half the size
- Then we have the recurrence $T(n) = 2T(n/2) + \Theta(n)$
- This is the same recurrence as for mergesort and its solution is $T(n) = O(n \log n)$

Average Case Intuition

- Even if the recurrence tree is somewhat unbalanced, Quicksort does well
- Imagine we always have a 9-to-1 split
- Then we get the recurrence $T(n) \leq T(9n/10) + T(n/10) + cn$
- Solving this recurrence (with annihilators or recursion tree) gives $T(n) = \Theta(n \log n)$
Take away: Both the worst case, best case, and average case analysis of algorithms can be important.
You will have a hw problem on the “average case intuition” for deterministic quicksort
(Note: A solution to the in-class exercise is on page 147 of the text)

Randomized Quick-Sort

We’d like to ensure that we get reasonably good splits reasonably quickly
Q: How do we ensure that we “usually” get good splits? How can we ensure this even for worst case inputs?
A: We use randomization.

Randomized Quicksort

//PRE: A[p..r] is the array to be sorted, p>=1, and r <= size of A
//POST: A[p..r] is in sorted order
R-Quicksort (A,p,r){
 if (p<r){
 q = R-Partition (A,p,r);
 R-Quicksort (A,p,q-1);
 R-Quicksort (A,q+1,r);
 }
}
Analysis

- R-Quicksort is a *randomized* algorithm
- The run time is a *random variable*
- We’d like to analyze the *expected* run time of R-Quicksort
- To do this, we first need to learn some basic probability theory.

Probability Definitions

(from Appendix C.3)

- A *random variable* is a variable that takes on one of several values, each with some probability. (Example: if X is the outcome of the role of a die, X is a random variable)
- The *expected value* of a random variable, X is defined as:

$$E(X) = \sum_x x \cdot P(X = x)$$

(Example if X is the outcome of the role of a three sided die,

$$E(X) = 1 \cdot (1/3) + 2 \cdot (1/3) + 3 \cdot (1/3)$$

$$= 2$$

- Two events A and B are *mutually exclusive* if $A \cap B$ is the empty set (Example: A is the event that the outcome of a die is 1 and B is the event that the outcome of a die is 2)
- Two random variables X and Y are *independent* if for all x and y, $P(X = x \text{ and } Y = y) = P(X = x)P(Y = y)$ (Example: let X be the outcome of the first role of a die, and Y be the outcome of the second role of the die. Then X and Y are independent.)

- An *Indicator Random Variable* associated with event A is defined as:
 - $I(A) = 1$ if A occurs
 - $I(A) = 0$ if A does not occur
- Example: Let A be the event that the role of a die comes up 2. Then $I(A)$ is 1 if the die comes up 2 and 0 otherwise.
Linearity of Expectation

- Let X and Y be two random variables
- Then $E(X + Y) = E(X) + E(Y)$
- (Holds even if X and Y are not independent.)

- More generally, let X_1, X_2, \ldots, X_n be n random variables
- Then
 \[E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) \]

Example

- Indicator Random Variables and Linearity of Expectation used together are a very powerful tool
- The “Birthday Paradox” illustrates this point
- To analyze the run time of quicksort, we will also use indicator r.v.’s and linearity of expectation (analysis will be similar to “birthday paradox” problem)

Example

- For $1 \leq i \leq n$, let X_i be the outcome of the i-th role of three-sided die
- Then
 \[E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i) = 2n \]

“Birthday Paradox”

- Assume there are k people in a room, and n days in a year
- Assume that each of these k people is born on a day chosen uniformly at random from the n days
- Q: What is the expected number of pairs of individuals that have the same birthday?
- We can use indicator random variables and linearity of expectation to compute this
• For all $1 \leq i < j \leq k$, let $X_{i,j}$ be an indicator random variable defined such that:
 - $X_{i,j} = 1$ if person i and person j have the same birthday
 - $X_{i,j} = 0$ otherwise
• Note that for all i, j,
 $$E(X_{i,j}) = P(\text{person } i \text{ and } j \text{ have the same birthday})$$
 $$= 1/n$$
 $$E(X) = E(\sum_{(i,j)} X_{i,j})$$
 $$= \sum_{(i,j)} E(X_{i,j})$$
 $$= \sum_{(i,j)} 1/n$$
 $$= \frac{n}{2} \frac{1}{n}$$
 $$= \frac{k(k-1)}{2n}$$

The second step follows by Linearity of Expectation

• Let X be a random variable giving the number of pairs of people with the same birthday
• We want $E(X)$
• Then $X = \sum_{(i,j)} X_{i,j}$
• So $E(X) = E(\sum_{(i,j)} X_{i,j})$

• Thus, if $k(k-1) \geq 2n$, expected number of pairs of people with same birthday is at least 1
• Thus if have at least $\sqrt{2n} + 1$ people in the room, can expect to have at least two with same birthday
• For $n = 365$, if $k = 28$, expected number of pairs with same birthday is 1.04

Reality Check
• Assume there are k people in a room, and n days in a year
• Assume that each of these k people is born on a day chosen uniformly at random from the n days
• Let X be the number of groups of three people who all have the same birthday. What is $E(X)$?
• Let $X_{i,j,k}$ be an indicator r.v. which is 1 if people $i, j,$ and k have the same birthday and 0 otherwise

Q1: Write the expected value of X as a function of the $X_{i,j,k}$ (use linearity of expectation)
Q2: What is $E(X_{i,j,k})$?
Q3: What is the total number of groups of three people out of k?
Q4: What is $E(X)$?

Todo

• Finish Chapter 7