
CS 261, HW9

Prof. Jared Saia, University of New Mexico

Due: May 2nd

1. A graph consists of a set of vertices, V , and a set of edges E, where
each edge in E is a tuple of 2 vertices in V . For example, we could
have V = {a, b, c, d} and E = {(a, b), (c, d), (a, d), (a, c)}. The degree
of a vertex v ∈ V is the number of edges containing v. In the example
graph, the degree of a is 3, and the maximum degree of the graph is
3.

a

c

db

A coloring of a graph is an assignment of colors to all vertices in V
such that for all (u, v) ∈ E, vertex u has a different color than vertex
v. A coloring of the example graph with 3 colors is: vertex a gets color
1, vertex b gets color 2, vertex c gets color 2, and vertex d gets color
3. Prove the following.

• Any graph with maximum degree of 3 can be colored with 4
colors. Prove this by induction over n = |V |. For your IH,
assume that any graph with maximum degree of 3 and less than
n vertices can be colored with 4 colors.

2. We say that a graph G = (V,E) is connected if for every pair of vertices
u, v ∈ V , there exists a path from u to v using only edges in G. To
illustrate, the example graph in Problem 1 is connected, but becomes

1

disconnected if we remove edge (a, b). For a graph G = (V,E) and
vertex v ∈ V , we define G− v to be the new graph (V − v,E′) where
E′ is E minus all edges containing v. Prove the following:

• Every connected graph G = (V,E) with |V | ≥ 2 has at least two
vertices x1 and x2, such that G − xi is connected for i = 1, 2.
Prove this by induction on n = |V |. For your IH, assume that
any graph with 2 < |V | < n has at least two vertices x1 and x2,
such that G− xi is connected for i = 1, 2.

3. Prove by induction that
n

i=0 r
i = rn+1−1

r−1 for every n > 0, and all

r ∕= 1. For your IH, assume that
n−1

i=0 ri = rn−1
r−1 .

4. Consider the recurrence f(n) = 3f(n/2) +
√
n, where f(c) = θ(1), for

constants c. Use the Master method to solve this recurrence.

5. Consider the following function:

int f (int n){

if (n==0) return 2;

else if (n==1) return 5;

else{

int val = 2*f (n-1);

val = val - f (n-2);

return val;

}

}

(a) Write a recurrence relation for the value returned by f . Solve the
recurrence exactly using annihilators. (Don’t forget to check it)

(b) Write a recurrence relation for the running time of f . Get a tight
upperbound (i.e. big-O) on the solution to this recurrence using
annihilators.

2

