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Chapter Motivation
� Number theory is the part of mathematics devoted to the study 

of the integers and their properties. 
� Key ideas in number theory include divisibility and the primality

of integers.
� Representations of integers, including binary and hexadecimal 

representations, are part of number theory. 
� Number theory has long been studied because of the beauty of 

its ideas, its accessibility, and its wealth of open questions. 
� We’ll use many ideas developed in Chapter 1 about proof 

methods and proof strategy in our exploration of number theory.
� Mathematicians have long considered number theory to be pure 

mathematics, but it has important applications to computer 
science and cryptography studied in Sections 4.5 and 4.6.



Chapter Summary
� Divisibility and Modular Arithmetic
� Integer Representations and Algorithms 
� Primes and Greatest Common Divisors
� Solving Congruences 
� Applications of Congruences
� Cryptography



Section 4.1



Section Summary
� Division 
� Division Algorithm 
� Modular Arithmetic



Division
Definition: If a and b are integers with a ≠ 0, then       
a divides b if there exists an integer c such that  b = ac.
� When a divides b we say that a is a factor or divisor of b

and that b is a multiple of a.
� The notation a | b denotes that a divides b.
� If a | b, then b/a is an integer.
� If a does not divide b, we write a ∤	b.
Example: Determine whether 3 | 7 and  whether          
3 | 12.



Properties of Divisibility
Theorem 1: Let a, b, and c be integers, where a ≠0. 

i. If a | b and a | c, then a | (b + c);
ii. If a | b, then a | bc for all integers c;
iii. If a | b and b | c, then a | c.

Proof: (i)  Suppose a | b and a | c, then it follows that there are 
integers s and t with b = as and c = at. Hence,

b + c = as + at = a(s + t).    Hence,		a | (b + c)
(Exercises 3 and 4 ask for proofs of parts (ii) and  (iii).)                                                 

Corollary 1: Let a, b, and c be integers, where a ≠0, such 
that a | b and a | c.  Then a | mb + nc whenever m and n are 
integers. 
Can you show how it follows easily from  from (ii) and (i) of 
Theorem 1?



Division Algorithm
� When an integer is divided by a positive integer, there is a quotient and 

a remainder. This is traditionally called the “Division Algorithm,” but is 
really a theorem.

Division Algorithm: If a is an integer and d a positive integer, then 
there are unique integers q and r, with 0 ≤ r < d, such that  a = dq + r
(proved in Section 5.2).

� d is called the divisor.
� a is called the dividend.
� q is called the quotient.      
� r is called the remainder.

Examples:  
� What are the quotient and remainder when 101	is divided by 11?

Solution: The quotient when 101 is divided by 11 is 9 = 101	div 11,   and the 
remainder is 2 = 101 mod 11. 

� What are the quotient and remainder when −11 is divided by 3?
Solution: The quotient when −11 is divided by 3 is −4 = −11	div 3,    and the 
remainder is 1 = −11 mod 3.

Definitions of Functions  
div and mod

q = a div d
r = a mod d



Congruence Relation
Definition: If a and b are integers and m is a positive integer, then a is 
congruent to b modulo m if m divides    a – b.
� The notation a  ≡ b (mod m) says  that a is congruent to b modulo m.  
� We say that a  ≡ b (mod m) is a congruence and that m is its modulus.
� Two integers are congruent mod m if and only if they have the same 

remainder when divided by m.
� If a is not congruent to b modulo m, we write 

a ≢ b (mod m)
Example: Determine whether 17 is congruent to 5 modulo 6 and 
whether 24 and 14 are congruent modulo 6.

Solution: 
� 17 ≡ 5 (mod 6) because 6 divides 17 − 5 = 12.	
� 24 ≢	14 (mod 6) since 24 − 14 = 10		is	not	divisible	by	6.



More on Congruences
Theorem 4: Let m be a positive integer. The integers a
and b are congruent modulo m if and only if there is 
an integer k such that a = b + km.
Proof: 
� If a  ≡ b (mod m), then (by the definition of 

congruence)  m | a – b. Hence, there is an integer k such 
that a – b = km and equivalently a = b + km.

� Conversely, if there is an integer k such that a = b + km, 
then km = a – b. Hence, m | a – b and a  ≡ b (mod m).



The Relationship between         
(mod m) and mod m Notations
� The use of “mod” in a  ≡ b (mod m) and a mod m = b 

are different.
� a  ≡ b (mod m) is a relation on the set of integers.
� In a mod m = b,  the notation mod denotes a function.

� The relationship between these notations is made 
clear in this theorem.

� Theorem 3: Let a and b be integers, and let m be a 
positive integer. Then a ≡ b (mod m)  if and only if       
a mod m = b mod m. (Proof  in the exercises)



Congruences of Sums and Products
Theorem 5: Let m be a positive integer. If  a  ≡ b (mod m) and  c  
≡ d (mod m), then

a + c  ≡ b + d (mod m) and ac  ≡ bd (mod m) 
Proof: 
� Because a  ≡ b (mod m)  and c  ≡ d (mod m), by Theorem 4 there 

are integers s and t with b = a + sm and d = c + tm.
� Therefore,  

� b + d = (a  + sm) + (c + tm) = (a + c) + m(s + t) and
� b d = (a  + sm) (c + tm) = ac + m(at + cs + stm).

� Hence, a + c  ≡ b + d (mod m) and ac  ≡ bd (mod m). 
Example: Because 7 ≡ 2 (mod 5) and  11 ≡ 1 (mod 5) , it 
follows from Theorem 5 that

18	=	7	+	11 ≡ 2	+	1	=	3 (mod 5)  
77	=	7	∙ 11 ≡ 2	∙ 1	=	2 (mod 5)



Algebraic Manipulation of Congruences
� Multiplying both sides of a valid congruence by an integer 

preserves validity. 
If  a  ≡ b (mod m) holds then c·a ≡ c·b (mod m), where c is any 
integer, holds by Theorem 5 with d = c.

� Adding an integer to both sides of a valid congruence preserves 
validity.

If  a  ≡ b (mod m) holds then c + a  ≡ c + b (mod m), where c is any 
integer, holds by Theorem 5 with d = c.

� Dividing a congruence by an integer does not always produce a 
valid congruence.
Example: The congruence 14≡ 8 (mod 6) holds. But dividing 
both sides by 2	does not produce a valid congruence since       
14/2	=	7	and	8/2	=	4,	but					7≢4	(mod	6).	
See	Section	4.3	for	conditions	when	division	is	ok.



Computing the mod m Function of 
Products and Sums
� We use the  following corollary to Theorem 5		to		
compute	the	remainder	of	the	product	or	sum	of	two	
integers	when	divided	by	m from	the	remainders	when	
each	is	divided	by	m.
Corollary: Let m be a positive integer and let a and b
be integers. Then
(a + b) (mod m) =  ((a mod m) + (b mod m)) mod m
and
ab mod m = ((a mod m) (b mod m)) mod m. 

(proof  in text)



Arithmetic Modulo m
Definitions: Let Zm be the set of nonnegative integers less 
than m: {0,1, …., m−1}

� The operation +m is defined as a +m b = (a + b) mod m. 
This is addition modulo m.

� The operation ∙m is defined as a ∙m b = (a ∙ b) mod m. This 
is multiplication modulo m.

� Using these operations is said to be doing arithmetic 
modulo m.
Example: Find 7	+11 9 and 7	·11 9.
Solution: Using the definitions above:
� 7	+11 9	=	(7	+	9)		mod 11	=	16	mod 11	=	5
� 7	·11 9	=	(7	∙ 9)		mod 11	=	63	mod 11	=	8



Arithmetic Modulo m
� The operations +m and  ∙m    satisfy many of the same properties as 

ordinary addition and multiplication.
� Closure: If a and b belong to Zm , then a +m b and a ∙m b belong 

to Zm .
� Associativity: If a, b, and c belong to Zm , then                                                                                       

(a +m b) +m c  = a +m (b +m c) and (a ∙m b) ∙m  c  = a ∙m (b ∙m c).
� Commutativity: If a and b belong to Zm , then                                                                                          

a +m b  = b +m a and a ∙m b  = b ∙m a.
� Identity elements: The elements 0 and 1 are identity elements 

for addition and multiplication modulo m, respectively.
� If a belongs to  Zm , then a +m 0 = a and a ∙m 1 = a.

continued →



Arithmetic Modulo m
� Additive inverses: If a≠	0	belongs to  Zm , then m−	a is the additive 

inverse of a modulo m and 0 is its own additive inverse.  
� a +m (m−	a ) = 0 and 0 +m 0 = 0

� Distributivity: If a, b, and c belong to Zm , then 
� a ∙m (b +m c) = (a ∙m b) +m (a ∙m c) and                                               

(a +m b) ∙m  c  = (a ∙m c) +m (b ∙m c).
� Exercises	42-44	ask	for	proofs	of	these	properties.
� Multiplicatative inverses	have	not	been	included	since	they	do	not	
always	exist.	For	example,	there	is	no	multiplicative	inverse	of	2	modulo	
6.

� (optional)	Using	the	terminology	of		abstract	algebra,		Zm with	+m is	a	
commutative	group	and		Zm with	+m and	∙m is	a	commutative	ring.		



Section 4.2



Section Summary

� Integer Representations
� Base b Expansions
� Binary Expansions
� Octal Expansions
� Hexadecimal Expansions

� Base Conversion Algorithm
� Algorithms for Integer Operations



Representations of Integers
� In the modern world, we use decimal, or base 10,
notation to represent integers. For example when we 
write 965,	we	 mean 9∙102	 +	6∙101	 +	5∙100	. 

� We  can represent numbers using any base b, where b
is a positive integer greater than 1.

� The bases b = 2	(binary), b = 8 (octal) , and b= 16	
(hexadecimal) are important for computing and 
communications

� The ancient Mayans used base 20 and the ancient 
Babylonians used base 60.



Base b Representations
� We can use positive integer b greater than 1 as a base, because of 

this theorem:
Theorem 1: Let b be a positive integer greater than 1. Then if n
is a positive integer, it can be expressed uniquely in the form:

n = akbk + ak-1bk-1+ …. + a1b + a0
where k is a nonnegative integer, a0,a1,…. ak are nonnegative 
integers less than b, and ak≠ 0. The aj, j = 0,…,k are called the 
base-b digits of the representation.

(We will prove this using mathematical induction in Section 5.1.)
� The representation of n given in Theorem 1 is called the base b 

expansion of n and is denoted by (akak-1….a1a0)b.
� We usually omit the  subscript 10 for base 10 expansions.



Binary Expansions
Most computers represent integers and do arithmetic with 
binary  (base 2) expansions of integers. In these 
expansions, the only digits used are 0	and	1.

Example: What is the decimal expansion of  the integer that 
has (1	0101	1111)2 as its binary expansion?

Solution:
(1	0101	1111)2				 =	1∙28	 +	0∙27	 +	1∙26	 +	0∙25	 +	1∙24	 +	1∙23	
+	1∙22	 +	1∙21	 +	1∙20	 =351.	

Example: What is the decimal expansion of  the integer that 
has  (11011)2 as its binary expansion?

Solution: (11011)2	=	1	∙24	 +	1∙23	 +	0∙22	 +	1∙21	 +	1∙20	 =27.	



Octal Expansions
The octal expansion (base 8) uses the digits 
{0,1,2,3,4,5,6,7}.
Example: What is the decimal expansion of the 
number with octal expansion (7016)8 ?
Solution: 7∙83	 +	0∙82	 +	1∙81	 +	6∙80	 =3598
Example:	What is the decimal expansion of the 
number with octal expansion (111)8 ?
Solution: 1∙82	 +	1∙81	 +	1∙80	 =	64	+	8	+	1	=	73



Hexadecimal Expansions
The hexadecimal expansion needs 16 digits, but our 
decimal system provides only 10. So letters are used for the 
additional symbols.  The hexadecimal system uses the 
digits {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. The letters A 
through F represent the decimal numbers 10 through 15.
Example: What is the decimal expansion of the number 
with hexadecimal expansion (2AE0B)16 ?
Solution: 
2∙164	 +	10∙163	 +	14∙162	 +	0∙161	 +	11∙160	 =175627
Example: What is the decimal expansion of the number 
with hexadecimal expansion (E5)16 ?
Solution: 14∙161	 +	5∙160	 =	224	+	5	=	229



Base Conversion
To construct the base b expansion of an integer n:

� Divide n by b to obtain a quotient and remainder.
n = bq0 + a0				 0 ≤ a0	≤b

� The remainder, a0	,	is the rightmost digit in the base b
expansion of n. Next, divide q0 by b.
q0 = bq1 + a1				 0 ≤ a1	≤b

� The remainder, a1, is the second digit from the right in 
the base b expansion of n.

� Continue by successively dividing the quotients by b, 
obtaining the additional base b digits as the remainder. 
The process terminates when the quotient is 0.

continued →



Algorithm: Constructing Base b Expansions

� q represents the quotient obtained by successive divisions 
by b, starting with q = n.

� The digits in the base b expansion are the remainders of the 
division given by q mod b.

� The algorithm terminates when q = 0 is reached.

procedure base b expansion(n, b: positive integers with b > 1)
q := n
k := 0
while (q ≠ 0)

ak := q mod b
q := q div b
k := k + 1

return(ak-1 ,…, a1,a0){(ak-1 … a1a0)b is base b expansion of n}



Base Conversion
Example: Find the octal expansion of (12345)10

Solution:  Successively dividing by 8 gives:
� 12345 = 8 · 1543 + 1
� 1543 = 8 · 192 + 7
� 192 = 8 · 24 + 0
� 24 = 8 · 3 + 0
� 3 = 8 · 0 + 3

The remainders are the digits from right to left   
yielding  (30071)8.



Comparison of Hexadecimal, Octal, 
and Binary Representations

Each octal digit corresponds to a block of 3 binary digits.
Each hexadecimal digit corresponds to a block of 4 binary digits. 
So, conversion between binary, octal, and hexadecimal is easy.

Initial 0s are not shown



Binary Modular Exponentiation
� In cryptography, it  is important to be able to find  bn mod m

efficiently, where b, n, and m are large integers.
� Use the binary expansion of n, n = (ak-1,…,a1,ao)2 , to compute bn .

Note that:

� Therefore,  to compute  bn, we need only compute the values of  
b, b2, (b2)2 = b4, (b4)2 = b8 , …,       and then multiply the terms           
in this list, where aj = 1.

Example: Compute 311 using this method.
Solution: Note that 11	= (1011)2 so that   311 = 38 32 31 =
((32)2	)2	32 31 =	(92	)2	∙	9	∙3	=	(81)2	∙	9	∙3	=6561 ∙	9	∙3 =117,147. 

continued →



Binary Modular Exponentiation 
Algorithm
� The algorithm successively finds b mod m, b2 mod m,            

b4 mod m, …,         mod m, and multiplies together the 
terms        where aj = 1.  

� O((log m )2 log n) bit operations are used to find  bn mod m.

procedure modular exponentiation(b: integer, n = (ak-1ak-2…a1a0)2 , m: positive 
integers)

x := 1
power := b mod m
for  i := 0	to k −	1

if ai= 1	then x := (x∙	power ) mod m
power := (power∙	power ) mod m

return x {x equals bn mod m }



Section 4.3



Section Summary

� Prime Numbers and their Properties
� Conjectures and Open Problems About Primes
� Greatest Common Divisors and Least Common 

Multiples
� The Euclidian Algorithm
� gcds as Linear Combinations



Primes
Definition: A positive integer p greater than 1 is 
called prime if the only positive factors of p are 1 and 
p. A positive integer that is greater than 1 and is not 
prime is called composite.

Example:  The integer 7 is prime because its only 
positive factors are 1 and 7, but 9 is composite 
because it is divisible by 3. 



The Fundamental Theorem of 
Arithmetic

Theorem: Every positive integer greater than 1 can be 
written uniquely as a prime or as the product of two or 
more primes where the prime factors are written in 
order of nondecreasing size. 
Examples:
� 100	=	2	∙	2	∙	5	∙	5	=	22 ∙	52
� 641	=	641
� 999 =	3	∙	3	∙	3	∙	37	=	33 ∙	37	
� 1024 =	2	∙	2	∙	2	∙	2	∙	2	∙	2	∙	2	∙	2	∙	2	∙	2	=	210



The Sieve of Erastosthenes
Erastothenes
(276-194 B.C.)

� The Sieve of Erastosthenes can be used to find all primes 
not exceeding a specified positive integer. For example, 
begin with the list of integers between 1 and 100.
a. Delete all  the integers, other than 2, divisible by 2.
b. Delete all the integers, other than 3, divisible by 3.
c. Next, delete all the integers, other than 5, divisible by 5.
d. Next, delete all the integers, other than 7, divisible by 7.
e. Since all the remaining integers  are not divisible by any of 

the previous integers, other than 1, the primes are:
{2,3,5,7,11,15,1719,23,29,31,37,41,43,47,53,

59,61,67,71,73,79,83,89,	97}
continued →



The Sieve of Erastosthenes
If an integer n is a 
composite integer, then it 
has a prime divisor less than 
or equal to √n.

To see this, note that if n = 
ab, then a ≤	√n or b ≤√n.

Trial division, a very 
inefficient method of 
determining if a number n
is prime, is to try every 
integer i≤√n and see if n is 
divisible by i. 



Infinitude of Primes
Theorem: There are infinitely many primes. (Euclid)

Proof:  Assume finitely many primes:  p1, p2, ….., pn

� Let q = p1p2··· pn + 1
� Either q is prime or by the fundamental theorem of arithmetic it is a 

product of primes. 

� But none of the primes pj divides q since if  pj | q, then pj divides                                              

q − p1p2··· pn = 1 .
� Hence, there is a prime not on the list p1, p2, ….., pn. It is either q, or if q is 

composite, it is a prime factor of q. This contradicts the assumption that  

p1, p2, ….., pn are all the primes. 

� Consequently, there are infinitely many primes.

Euclid 

(325 B.C.E. – 265 B.C.E.)

This proof was given by Euclid  The Elements. The proof is considered to be one of 

the most beautiful in all  mathematics.  It is  the first proof in The Book, inspired by 

the famous mathematician Paul Erdős’ imagined collection of perfect proofs 

maintained by God.
Paul  Erdős

(1913-1996) 



Mersene Primes
Definition: Prime numbers of the form 2p−	1 ,	where p is 
prime, are called Mersene primes.
� 22−	1 =	3,	23−	1 =	7, 25−	1 =	37	,	and	 27−	1	 =	127		are	
Mersene primes.

� 211−	1 =	2047	 is not a Mersene prime since	2047	=	23∙89.
� There	is	an	efficient	test	for	determining	if	 2p−	1 is	prime.
� The	largest	known	prime	numbers	are	Mersene primes.
� As	of	mid	2011,	47	Mersene primes	were	known,	the	largest		
is	243,112,609 −	1,	which	has	nearly	13	million	decimal	digits.

� The	Great Internet Mersene Prime Search (GIMPS)	is	a	
distributed	computing	project	to	search		for	new	Mersene
Primes.

http://www.mersenne.org/

http://www.mersenne.org/


Distribution of Primes
� Mathematicians have been interested in the distribution of 

prime numbers among the positive integers. In the 
nineteenth century, the prime number theorem was proved 
which gives an asymptotic estimate for the number of 
primes not exceeding x. 
Prime Number Theorem: The ratio of the number of 
primes not exceeding x and x/ln x approaches 1 as x grows 
without bound. (ln x is the natural logarithm of x)
� The theorem tells us that the number of primes not exceeding 

x, can be approximated by x/ln x.
� The odds that a randomly selected positive integer less than n

is prime are approximately (n/ln n)/n = 1/ln n.



Generating Primes
� The problem of generating large  primes is of both theoretical and 

practical interest.
� We will see (in Section 4.6) that finding large primes with hundreds of 

digits is important in cryptography.
� So far, no useful closed formula that always produces primes  has been 

found. There is no simple  function f(n) such that f(n) is prime for all 
positive integers n. 

� But  f(n) = n2 − n + 41 is prime for all integers 1,2,…,	40. Because of 
this, we might conjecture that f(n) is prime for all positive integers n. 
But	f(41) = 412 is	not	prime.	

� More generally, there is  no polynomial with integer coefficients such 
that  f(n) is prime for all positive integers n. (See supplementary 
Exercise 23.)

� Fortunately, we can generate large integers which are almost certainly 
primes. See Chapter 7.



Conjectures about Primes
� Even though primes have been studied extensively for 

centuries, many conjectures about them are unresolved, 
including:

� Goldbach’s Conjecture:	Every	even	integer	n,	n >	2,	is	the	
sum	of	two	primes.	It	has	been	verified		by	computer	for	all	
positive	even	integers	up	to		1.6	∙1018.		The	conjecture	is	
believed	to	be	true	by	most	mathematicians.

� The Twin Prime Conjecture:	The	twin	prime	conjecture	is	
that	there	are	infinitely	many	pairs	of	twin	primes.	Twin	
primes	are	pairs	of	primes	that	differ	by	2.	Examples	are	3	
and	5,	5	and	7,	11	and	13,	etc.	The	current	world’s	record	
for	twin	primes	(as	of	mid	2011)	consists	of	numbers			
65,516,468,355∙2333,333 ±1,	which	have	100,355	decimal	
digits.



Greatest Common Divisor
Definition: Let a and b be integers, not both zero. The 
largest integer d such that d | a and also d | b is called the 
greatest common divisor of a and b. The  greatest common 
divisor of a and b is denoted by gcd(a,b).

One can find greatest common divisors of small numbers 
by inspection.
Example:What is the greatest common divisor of 24 and 
36? 
Solution: gcd(24,	36) = 12
Example:What is the greatest common divisor of 17 and 
22?
Solution: gcd(17,22) = 1



Greatest Common Divisor
Definition: The integers a and b are relatively prime if their 
greatest common divisor is 1. 
Example: 17 and 22
Definition: The integers a1, a2, …, an are pairwise relatively prime 
if gcd(ai, aj)= 1 whenever 1	≤	i<j≤n.
Example: Determine whether the integers 10,	17 and 21	are	
pairwise relatively	prime.
Solution: Because	gcd(10,17)	=	1,	gcd(10,21)	=	1,	and	
gcd(17,21)	=	1,	10,	17,	and	21	are	pairwise relatively	prime.
Example: Determine whether the integers	10,	19,	and	24	are	
pairwise relatively	prime.
Solution: Because	gcd(10,24)	=	2,	10,	19,	and	24	are		not	
pairwise relatively	prime.



Greatest Common Divisor
Definition: The integers a and b are relatively prime if their 
greatest common divisor is 1. 
Example: 17 and 22
Definition: The integers a1, a2, …, an are pairwise relatively prime 
if gcd(ai, aj)= 1 whenever 1	≤	i<j≤n.
Example: Determine whether the integers 10,	17 and 21	are	
pairwise relatively	prime.
Solution: Because	gcd(10,17)	=	1,	gcd(10,21)	=	1,	and	
gcd(17,21)	=	1,	10,	17,	and	21	are	pairwise relatively	prime.
Example: Determine whether the integers	10,	19,	and	24	are	
pairwise relatively	prime.
Solution: Because	gcd(10,24)	=	2,	10,	19,	and	24	are		not	
pairwise relatively	prime.



Finding the Greatest Common Divisor 
Using Prime Factorizations
� Suppose  the prime factorizations of a and b are:

where each exponent is a nonnegative integer, and where all primes 
occurring in either prime factorization are included in both. Then:

� This formula is valid since the integer  on the right (of the equals sign) 
divides both a and b. No larger integer can divide both a and b. 
Example:    120 =  23 ∙3	∙5						500 =  22 ∙53

gcd(120,500) = 2min(3,2) ∙3min(1,0) ∙5min(1,3) = 22 ∙30 ∙51 =	20
� Finding the gcd of two positive integers using their prime factorizations 

is not efficient because there is no efficient algorithm for finding the 
prime factorization of a positive integer.



Least Common Multiple
Definition: The least common multiple of the positive integers a and b 
is the smallest  positive integer that is divisible by both a and b. It is 
denoted by lcm(a,b).

� The least common multiple can also be computed from the prime 
factorizations. 

This number is divided by both a and b and no smaller number  is 
divided by a and b.
Example:  lcm(233572, 2433) = 2max(3,4) 3max(5,3) 7max(2,0) = 24 35 72

� The greatest common divisor and the least common multiple of two 
integers are related by:
Theorem 5: Let a and b be positive integers. Then

ab = gcd(a,b) ∙lcm(a,b)
(proof		is	Exercise	31)



Euclidean Algorithm
� The Euclidian algorithm is an efficient method for  

computing the greatest common divisor of two integers. It 
is based on the idea that gcd(a,b) is equal to gcd(a,c) when 
a > b and c is the remainder when a is divided by b.
Example: Find  gcd(287,	91):

� 287	=	91	∙	3	+	14
� 91	=	14	∙	6	+	7
� 14	=		7	∙	2	+	0

gcd(287, 91) = gcd(91, 14) =  gcd(14, 7)  = 7

Euclid 
(325 B.C.E. – 265 B.C.E.)

Stopping 
condition

Divide 287 by 91

Divide 91 by 14
Divide 14 by 7
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Euclidean Algorithm
� The Euclidean algorithm expressed in pseudocode is:

� In Section 5.3, we’ll see that the time complexity of the 
algorithm is O(log b), where a > b. 

gcd(a, b: positive integers, a≥b)
if   b =	0

return a;
else

return gcd(b, a mod b);



Correctness of Euclidean Algorithm 
Lemma 1: Let a = bq + r, where a, b, q, and r are 
integers. Then gcd(a,b) = gcd(b,r).
Proof:
� Suppose that d divides both a and b. Then d also divides 
a − bq = r (by Corollary 1 of Slide 7). Hence, any 
common divisor of a and b must also be a  common 
divisor of b and r.

� Suppose that d divides both b and r. Then d also divides 
bq + r = a. Hence, any common divisor of a and b must 
also be a common divisor of b and r.

� Therefore, gcd(a,b) = gcd(b,r).



Correctness of Euclidean Algorithm 
� Suppose that a and b are positive 

integers  with a ≥	b.	
Let r0 = a and r1 = b. 
Successive applications of the division 
algorithm   yields:

� Eventually, a remainder of zero occurs in the sequence of terms:  a = r0	> r1 > r2 >	∙	∙	∙		≥	0.	
The	sequence	can’t	contain	more	than	a terms.

� By	Lemma	1	
gcd(a,b) = gcd(r0,r1) = ∙	∙	∙	=	gcd(rn-1,rn)	=	gcd(rn ,	0)	=	rn.

� Hence	the	greatest	common	divisor	is	the	last	nonzero	remainder	in	the	sequence	of	
divisions.

r0 = r1q1 + r2 0 ≤ r2 < r1,
r1 = r2q2 + r3 0 ≤ r3 < r2,

∙
∙
∙

rn-2 = rn-1qn-1 + r2 0 ≤ rn < rn-1,
rn-1 = rnqn .



gcds as Linear Combinations
Bézout’s Theorem: If a and b are positive integers, then 
there exist integers s and t such that  gcd(a,b) = sa + tb. 

Definition: If a and b are positive integers, then integers s
and t such that  gcd(a,b) = sa + tb are called Bézout
coefficients of a and b. The equation  gcd(a,b) = sa + tb is 
called Bézout’s identity. 

� By Bézout’s Theorem,  the gcd of integers a and b can be 
expressed in the form  sa + tb where s and t are integers. 
This is a linear combination with integer coefficients of a
and b.
� gcd(6,14) = (−2)∙6	+	1∙14



Finding gcds as Linear Combinations
Example: Express gcd(252,198) = 18	as	a	linear	combination	of	252	and	198.
Solution: First use the Euclidean algorithm to show gcd(252,198) = 18

i. 252	=	1∙198	+	54
ii. 198	=	3 ∙54	+	36
iii. 54	=	1 ∙36	+	18
iv. 36	=	2 ∙18	

� Now	working	backwards,	from		iii and	ii	above	
� 18	=	54	−		1 ∙36	
� 36	=	198	−		3 ∙54	

� Substituting	the	2nd equation	into	the	1st yields:
� 18	=	54	−		1 ∙(198	−		3 ∙54	)=	4 ∙54	−		1 ∙198	

� Substituting	54	=	252	−		1 ∙198	(from	i))	yields:
� 18	=	4 ∙(252	−		1 ∙198)	−		1 ∙198	=	4 ∙252	−		5 ∙198	

� This method illustrated above is a two pass method. It first uses the Euclidian 
algorithm to find the gcd and then works backwards to express the gcd as a 
linear combination of the original two integers. A one pass method, called the 
extended Euclidean algorithm, is developed in the exercises.



Exercise
Problem: Express gcd(13,5) = 1	as	a	linear	
combination	of	13	and	5.



Consequences of Bézout’s Theorem
Lemma 2: If a, b, and c are positive integers such that 
gcd(a, b) = 1 and a | bc, then a | c.
Proof:  Assume gcd(a, b) = 1 and a | bc
� Since gcd(a, b) = 1, by Bézout’s Theorem  there are integers s

and t such that    
sa + tb = 1.

� Multiplying both sides of the equation by c, yields sac + tbc = 
c.

� From Theorem 1 of Section 4.1:
a | tbc (part ii) and a divides sac + tbc since a | sac and a|tbc (part i)

� We conclude a | c, since sac + tbc = c.



Dividing Congruences by an Integer
� Dividing both sides of a valid congruence by an integer 

does not always produce a valid congruence.
� But dividing	by	an	integer	relatively	prime	to	the	
modulus	does	produce	a	valid	congruence:	
Theorem 7:	Let	m	be	a	positive	integer	and	let	a,	b,	
and	c be	integers.	If	ac ≡ bc (mod m) and gcd(c,m) = 1,	
then	a	≡ b	(mod	m).
Proof: Since ac ≡ bc (mod m), m | ac − bc = c(a− b)   

by Lemma 2 and the fact that gcd(c,m) = 1, it follows 
that   m | a− b. Hence, a≡ b (mod	m).



Section 4.4



Section Summary

� Linear Congruences
� The Chinese Remainder Theorem
� Computer Arithmetic with Large Integers
� Fermat’s Little Theorem
� Primitive Roots and Discrete Logarithms



Linear Congruences
Definition: A congruence of the form                          

ax ≡ b( mod m),
where m is a positive integer, a and b are integers, and x is a variable, is 
called a linear congruence.

� The solutions to a linear congruence ax≡ b( mod m) are  all integers x
that satisfy the congruence.

Definition: An integer ā such that āa ≡ 1( mod m) is said to be an 
inverse of a modulo m.
Example:  5 is an inverse of 3 modulo 7 since 5∙3 = 15 ≡ 1(mod 7) 

� One method of solving linear congruences makes use of  an inverse ā, 
if it exists. Although we can not divide both sides of the congruence by 
a, we can multiply by ā to solve for x.



Inverse of a modulo m
� The following theorem guarantees that an inverse of a

modulo m exists whenever a and m are relatively prime.  
Two integers a and b are relatively prime when gcd(a,b) = 1.
Theorem 1: If a and m are relatively prime integers and m
> 1, then an inverse of a modulo m exists. Furthermore, 
this inverse is unique modulo m. 
Proof:  Since gcd(a,m) = 1, by Theorem 6 of Section 4.3, 
there are integers  s and t such that   sa + tm = 1. 
� Hence, sa + tm ≡ 1 ( mod m).
� Since tm ≡ 0 ( mod m), it follows that sa ≡ 1 ( mod m)
� Consequently, s is an inverse of a modulo m.
� The uniqueness of the inverse is Exercise 7.



Finding Inverses
� The Euclidean algorithm and Bézout coefficients gives us a 

systematic approaches to finding inverses. 
Example: Find an inverse of 3 modulo 7.
Solution: Because gcd(3,7) = 1, by Theorem 1,	an inverse 
of 3 modulo 7 exists. 
� Using the Euclidian algorithm:  7 = 2∙3 + 1.
� From this equation, we get  −2∙3 + 1∙7	= 1,	and	see	that	−2		
and	1	are	Bézout coefficients of 3 and 7.

� Hence,		−2	is	an	inverse	of	3	modulo	7.	
� Also	every	integer	congruent	to	−2	modulo	7	is	an	inverse	of	
3	modulo	7,	i.e.,	5,	−9,	12,	etc.



Using Inverses to Solve Congruences
� We can solve the congruence   ax≡ b( mod m) by multiplying both 

sides by ā.
Example:  Solve 3x≡ 4( mod 7). 
Solution:  We found that −2	is an inverse of 3	modulo 7. We multiply 
both sides of the congruence by −2	to get

−2		∙ 3x ≡ −2	∙	4(mod 7).
Since  −6	≡ 1	(mod 7)  and −8	≡ 6	(mod 7), x≡ −8 ≡ 6	(mod 7)
Note that all x with x ≡ 6	(mod 7) are solutions! Namely,  6,13,20	…
and  −1, −	8, −	15,…



The Chinese Remainder Theorem
� Sun-Tsu asked:

There are certain things whose number is unknown. 
When divided by 3, the remainder is 2; when divided by 
5, the remainder is 3; when divided by 7, the remainder 
is 2. What will be the number of things?

� This puzzle can be translated into the  solution of:
x ≡ 2	( mod 3),
x ≡ 3	( mod 5),
x ≡ 2	( mod 7)?

� The Chinese Remainder Theorem solves these puzzles.



The Chinese Remainder Theorem
Theorem 2: (The Chinese Remainder Theorem) Let m1,m2,…,mn be pairwise 
relatively prime positive integers greater than one, and a1,a2,…,an arbitrary 
integers. Then the system

x ≡ a1 ( mod m1)
x ≡ a2 ( mod m2)
∙
∙
∙

x ≡ an ( mod mn)
has a unique solution  modulo m = m1m2 ∙	∙	∙	mn. 
(That is, there is a solution x with  0 ≤	x	<m and	all	other	solutions	are	
congruent	modulo	m to	this	solution.)

� Proof: We’ll  show that a solution exists by describing a way to construct the 
solution. Showing that the solution is unique modulo m is Exercise 30.
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The Chinese Remainder Theorem
To construct a solution first let Mk=m/mk for k = 1,2,…,n and m = m1m2 ∙	∙	∙	mn.

Since  gcd(mk ,Mk ) = 1,	by	Theorem	1,		there is an integer  yk , an inverse of Mk modulo 
mk, such that

Mk yk ≡ 1 ( mod mk ).
Form the sum

x = a1 M1 y1		 +	a2 M2 y2 + ∙	∙	∙	+	an Mn yn .

Because	Mj ≡ 0	( mod mk),   whenever j ≠k , all terms except the kth term in this sum are 
congruent to 0 modulo mk .
Because  Mk yk ≡ 1 ( mod mk ), we see that  x ≡ ak Mk yk ≡ ak( mod mk), for k = 1,2,…,n.
Hence, x is a simultaneous solution to the n congruences.

x ≡ a1 ( mod m1)
x ≡ a2 ( mod m2)
∙
∙
∙

x ≡ an ( mod mn)



The Chinese Remainder Theorem
Example: Consider the 3 congruences from Sun-Tsu’s problem: 

x ≡ 2	( mod 3),  x ≡ 3	( mod 5), x ≡ 2	( mod 7).
� Let m = 3∙ 5 ∙ 7		= 105, M1		 =	m/3	=	35, M2 =	m/5	=	21,																					

M3		 =	m/7	=	15.
� We	see	that

� 2	is	an	inverse	of	M1		 =	35	modulo	3	since	35 ∙ 2	≡ 2 ∙ 2 ≡ 1 (mod 3)
� 1	is	an	inverse	of	M2		 =	21	modulo	5	since	21	≡ 1 (mod 5)
� 1	is	an	inverse	of	M3		 =	15	modulo	7	since	15 ≡ 1 (mod 7)

� Hence,	
x = a1M1y1		+	a2M2y2 + a3M3y3	
= 2	∙	35 ∙ 2	+	3	∙	21 ∙ 1		+	2	∙	15 ∙ 1		=	233 ≡	23	(mod	105)

� We	have	shown	that	23	is	the	smallest	positive	integer	that	is	a	
simultaneous	solution.	Check	it!



Application: Efficient Arithmetic
Suppose m1,m2 ,∙	∙	∙,	mn are relatively prime and let m be 

their product
We can represent any number between 0 and m-1 as a 
n-tuple of the remainders mod mi

Idea: Perform arithmetic over these tuples!
Example: Let m1,m2 ,∙	∙	∙,	mn = 99, 98, 97 and 95

Then 123,684 = (33,8,9,89); 413,456 = (32,92,42,16)
The sum is then (65,2,51,10)
CRT shows that this tuple equals 537,140.



Fermat’s Little Theorem
Theorem 3: (Fermat’s Little Theorem) If p is prime and a is an integer not 
divisible by p, then ap-1 ≡	1	(mod	p)
Furthermore, for every integer a we have  ap ≡	a (mod	p)
(proof  outlined in Exercise 19)

Fermat’s little theorem is useful in computing the remainders modulo p of 
large powers of integers.
Example: Find 7222	mod 11.
By	Fermat’s	little	theorem,	we	know	that	710	≡	1	(mod	11),	and	so		(710	)k	≡	1	
(mod	11),	for	every	positive	integer	k.	Therefore,

7222	= 722∙10	+	2 = (710)2272 ≡	 (1)22 ∙49	≡	5	(mod	11).

Hence,	7222	mod 11	=	5.

Pierre de Fermat
(1601-1665)
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� Hashing Functions
� Pseudorandom Numbers
� Check Digits



Hashing Functions
Definition: A hashing function h assigns memory location h(k) to the record 
that has k as its key.
� A common hashing function is  h(k) = k mod m, where m is the number of 

memory locations. 
� Because this hashing function is onto, all memory locations are possible.

Example: Let h(k) = k mod 111.	This	hashing	function assigns the records of 
customers with social security numbers as keys to memory locations in the 
following manner:

h(064212848) = 064212848	mod 111 = 14
h(037149212) = 037149212	mod 111 = 65
h(107405723) = 107405723	mod 111 = 14,	but	since	location	14	is	already	occupied,	the	
record	is	assigned	to		the	next	available	position,	which	is	15.

� The hashing function is not one-to-one as there are many more possible keys 
than memory locations.  When more than one record is assigned to the same 
location, we say a collision occurs.  Here a collision has been resolved by 
assigning the record to the first free location.



Pseudorandom Numbers
� Randomly chosen numbers are needed for many purposes, including 

computer simulations. 
� Pseudorandom numbers are not truly random since they are generated 

by systematic methods. 
� The linear congruential method is one commonly used procedure for 

generating pseudorandom numbers. 
� Four integers are needed: the modulus m, the multiplier a, the 

increment c, and seed x0, with     2	≤	a<	m,	0 ≤	c<	m,	0 ≤ x0 <	m. 
� We generate a sequence of pseudorandom numbers {xn}, with                
0 ≤ xn <	m for all n, by successively using the recursively defined 
function

(an example of a recursive definition, discussed in Section 5.3)
� If psudorandom numbers between 0 and 1 are needed, then the 

generated numbers are divided by the modulus, xn /m.

xn+1 = (axn + c) mod m.



Check Digits:  UPCs
� A common method of detecting errors in strings of digits is to add an extra 

digit at the end, which is evaluated using a function. If the final digit is  not 
correct, then the string is assumed not to be correct.

Example: Retail products are identified by their Universal Product Codes 
(UPCs). Usually these have 12 decimal digits, the last one being the check 
digit. The check digit is determined by the congruence:

3x1 + x2 + 3x3 + x4 + 3x5 + x6 + 3x7 + x8 + 3x9 + x10 + 3x11 + x12≡	0 (mod 10).
a. Suppose	that	the	first	11	digits	of	the	UPC	are	79357343104.	What	is	the	check	digit?
b. Is	041331021641	a	valid	UPC?
Solution:	
a. 3∙7	+	9	+	3∙3	+	5	+	3∙7	+	3	+ 3∙4	+	3	+ 3∙1	+	0	+	3∙4	+	x12≡	0 (mod 10)	

21	+	9	+	9	+	5	+	21	+	3	+	12+	3	+	3	+	0	+	12	+	x12≡	0 (mod 10)																
98	+	x12≡	0 (mod 10)	
x12≡	2 (mod 10)					So,	the	check	digit	is	2.

b. 3∙0	+	4	+	3∙1	+	3	+	3∙3	+	1	+ 3∙0	+	2	+ 3∙1	+	6	+	3∙4	+		1≡	0 (mod 10)	
0	+	4	+	3	+	3	+	9	+	1	+	0+	2	+	3	+	6	+	12	+	1	=	44	≡	4	≢ 0	(mod 10)																
Hence,	041331021641		is	not	a	valid	UPC.
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� Classical Cryptography
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� Public Key Cryptography
� RSA Cryptosystem
� Crytographic Protocols



Caesar Cipher
Julius Caesar created secret messages by shifting each letter three letters 
forward in the alphabet (sending the last three letters to the first three letters.) 
For example, the letter B is replaced by E and the letter X is replaced by A. This 
process of making a message secret is an example of encryption.
Here is how the encryption process works:
� Replace each letter by an integer from Z26, that is an integer from 0	to 25	

representing one less than its position in the alphabet.
� The encryption function is f(p) = (p + 3) mod 26. It replaces each integer p in 

the set {0,1,2,…,25} by f(p) in the set {0,1,2,…,25} .
� Replace each integer p by the letter with the position p + 1	in the alphabet.

Example: Encrypt the message “MEET YOU IN THE PARK” using the Caesar 
cipher.
Solution: 12	4	4	19				24	14	20				8	13				19	7	4				15	0	17	10.
Now replace each of these numbers p by f(p) = (p + 3) mod 26.

15	7	7	22				1	17	23				11	16				22	10	7				18	3	20	13.
Translating the numbers back to letters produces the encrypted message

“PHHW  BRX LQ  WKH  SDUN.”



Caesar Cipher
� To recover the original message, use f−1(p) = (p−3)	mod 26.	
So,	each	letter	in	the	coded	message	is	shifted	back	three	
letters	in	the	alphabet,	with	the	first	three	letters	sent	to	
the	last	three	letters.	This	process	of	recovering	the	original	
message	from	the	encrypted	message	is	called	decryption.

� The Caesar cipher is one of a family of ciphers called shift 
ciphers. Letters can be shifted by an integer k, with 3	being	
just	one	possibility. The encryption function is

f(p) = (p + k) mod 26
and the decryption function is

f−1(p) = (p−k)	mod 26
The	integer	k is	called	a	key.



Shift Cipher
Example 1: Encrypt the message “STOP GLOBAL 
WARMING” using the shift cipher with k = 11.
Solution: Replace each letter with the corresponding 
element of Z26.
18	19	14	15				6	11	14	1	0	11					22	0	17	12		8		13		6.

Apply the shift  f(p) = (p + 11) mod 26, yielding
3	4	25	0				17	22	25	12	11	22					7	11	2	23		19		24		17.            

Translating the numbers back to letters produces the 
ciphertext

“DEZA RWZMLW HLCXTYR.”



Shift Cipher
Example 2: Decrypt the message “LEWLYPLUJL PZ H 
NYLHA  ALHJOLY” that was encrypted using the shift 
cipher with k = 7.
Solution: Replace each letter with the corresponding 
element of Z26.
11	4	22	11	24	15	11	20	9	11			15	25			7			13	24	11	7		0				0	11	7		9		14		11		24.

Shift each of the numbers by −k=−7	modulo	26, yielding
4	23	15	4	17	8	4	13	2	4			8	18				0				6	17	4		0		19					19		4		0		2		7		4		17.

Translating the numbers back to letters produces the 
decrypted message

“EXPERIENCE IS A GREAT TEACHER.”



Affine Ciphers
� Shift ciphers are a special case of affine ciphers which use functions of the form

f(p) = (ap + b) mod 26,
where a and b are integers, chosen so that f  is a bijection.
The function is a bijection if and only if gcd(a,26)	=	1.	

� Example: What letter replaces the letter K when the  function f(p) = (7p + 3)
mod 26	is used for encryption.
Solution: Since 10 represents K, f(10) = (7∙10 + 3) mod 26	=21,	which is then 
replaced by V.

� To decrypt a message encrypted by an affine cipher, the congruence  c ≡ ap + b
(mod 26) needs to be solved for p.
� Subtract b from both sides to obtain c−	b ≡ ap (mod 26).
� Multiply both sides by  the inverse of a modulo 26, which exists since gcd(a,26) 

= 1. 
� ā(c− b) ≡ āap (mod 26), which simplifies to ā(c− b) ≡ p (mod 26).
� p ≡	ā(c− b) (mod 26) is used to determine p in Z26.



Cryptanalysis of Affine Ciphers
� The process of recovering plaintext from ciphertext without knowledge both  of the 

encryption method and the key is known as cryptanalysis or breaking codes.
� An important tool for cryptanalyzing ciphertext produced with a affine ciphers is the 

relative frequencies of letters. The nine most common letters in the English texts are E 
13%, T 9%, A 8%, O 8%, I 7%, N 7%, S 7%, H 6%, and R 6%.

� To analyze ciphertext:
� Find the frequency of the letters in the ciphertext.
� Hypothesize that the most frequent letter is produced by encrypting E. 
� If the value of the shift from E to the most frequent letter is k, shift the ciphertext by −k

and see if it makes sense.
� If not, try T as a hypothesis and continue. 

� Example: We intercepted the message “ZNK KGXRE HOXJ MKZY ZNK CUXS” that we 
know was produced by a shift cipher.  Let’s try to cryptanalyze.

� Solution: The most common letter in the ciphertext is K. So perhaps the letters were 
shifted by 6 since this would then map E to K. Shifting the entire message by −6	gives	us	
“THE	EARLY	BIRD	GETS	THE	WORM.”



Block Ciphers
� Ciphers that replace each letter of the alphabet by another letter 

are called character or monoalphabetic ciphers. 
� They are vulnerable to cryptanalysis based on letter frequency. 

Block ciphers avoid this problem, by replacing blocks of letters 
with other blocks of letters.

� A simple type of block cipher is called the transposition cipher. 
The key is a permutation σ of	the	set	{1,2,…,m},	where	m is	an	
integer,	that	is	a	one-to-one	function	from	{1,2,…,m}	to	itself.	

� To	encrypt	a	message,	split	the	letters	into	blocks	of	size	m, 
adding additional letters to fill out the final block. We encrypt  
p1,p2,…,pm as c1,c2,…,cm = pσ(1),pσ(2),…,pσ(m).

� To decrypt the  c1,c2,…,cm transpose the letters using the inverse 
permutation  σ−1.



Block Ciphers
Example:  Using the transposition cipher based on the 
permutation σ of	the	set	{1,2,3,4}	with	σ(1)	=	3, σ(2)	=	1,
σ(3)	=	4, σ(4)	=	2,
a. Encrypt	the	plaintext	PIRATE	ATTACK
b. Decrypt	the	ciphertext message	SWUE	TRAEOEHS,	which	

was	encryted using	the	same	cipher.	
Solution:
a. Split	into	four	blocks		PIRA	TEAT	TACK.

Apply	the	permutation σ giving	IAPR	ETTA	AKTC.
b. σ−1	:		σ −1(1)	=	2, σ −1(2)	=	4, σ −1(3)	=	1, σ −1(4)	=	3.

Apply	the	permutation	σ−1	giving			USEW	ATER	HOSE.
Split	into	words		to	obtain	USE	WATER	HOSE.



Cryptosystems
Definition: A cryptosystem is a five-tuple (P,C,K,E,D), 
where
� P is the set of plaintext strings,
� C is the set of ciphertext strings,
� K is the keyspace (set of all possible keys),
� E is the set of encryption functions, and
� D is the set of decryption functions.

� The encryption function in E corresponding to the key k is 
denoted by Ek and the decription function in D that 
decrypts cipher text enrypted using Ek is denoted by Dk. 
Therefore:

Dk(Ek(p)) = p, for all plaintext strings p.



Cryptosystems
Example: Describe the family of shift ciphers as a 
cryptosystem.
Solution: Assume the messages are strings consisting 
of  elements in Z26. 
� P is the set of strings of elements in  Z26,
� C is the set of  strings of elements in  Z26,
� K = Z26,
� E consists of functions of the form                                          
Ek (p) = (p + k) mod 26 , and

� D is the same as E where Dk (p) = (p − k) mod 26 .



Public Key Cryptography
� All classical ciphers, including shift and affine ciphers, are 

private key cryptosystems. Knowing the encryption key 
allows one to quickly determine the decryption key. 

� All parties who wish to communicate using a private key 
cryptosystem must share the key and keep it a secret. 

� In public key cryptosystems, first invented in the 1970s, 
knowing how to encrypt a message does not help one to 
decrypt the message. Therefore, everyone can have a 
publicly known encryption key. The only key that needs to 
be kept secret is the decryption key.



Public Key Cryptography



RSA Cryptosystem
� Encryption key  is (n,e), where  n = pq is the product 

of two large primes p  and q, and, e is relatively prime 
to (p−1)(q −1).									C=	Me mod n

� Decryption key is d, an inverse of e mod (p−1)(q −1).						
M=	Cd mod n



Correctness
� C=	Memod p∙q,	e is relatively prime to (p−1)(q −1).
� M=	Cd mod p∙q,		d is inverse of e mod (p−1)(q −1).

� Cd mod p∙q =	Med mod p∙q =	M1+k(p-1)(q-1) mod p∙q
� By	CRT,	Med ≡	M	(mod	pq)	iff Med ≡	M	(mod	p)	and			
Med ≡	M	(mod	q).	Start	with	p.
� Case	1:	p	|	M.		Then	Med ≡	0	≡	M	(mod p)
� Case	2:	p	∤ M.		Then	M1+x(p-1)	≡	M	(mod p) (By	FLT)

� Similarly,	Med =	M	(mod q).



Attack-Resistance
� C=	Memod p∙q,	e is relatively prime to (p−1)(q −1).
� M=	Cd mod p∙q,		d is inverse of e mod (p−1)(q −1).

� Q: Why is it hard to decrypt even if know (n,e)
� A:	Need	to	find	inverse	of	e	mod (p−1)(q −1).

� It’s	hard	to	calculate	(p−1)(q −1),	if	only	know	n
� True	since	it	is	hard	to	factor a	large	number	n



Some Details
� Q: How do we choose random primes p and q?

� A:	Choose	a	random	number,	and	do	a	primality	test to	check	
if	it	is	prime

� Since	there	are	O(x/	log	x)	primes	less	than	x,	probability	that	
a	random	number	less	than	x	is	prime	is	O(1/log	x)

� Q:	How	do	we	choose	e	such	that	gcd(e,(p-1)(q-1))	=	1?
� A:	Let	e	be	a	random	prime	less	than	(p-1)(q-1)
� Number	of	factors	in	(p-1)(q-1)	is	O(log	n).		Why?
� Probability	e	is	one	of	those	factors	is	O(log	n/(n/log	n))	=	
O((log2 n)/n)



Application: Privacy in Public
� Alice and Bob are in a bugged, can only communicate 

via speech, and have no shared  secrets.
� Q:	Can	they	talk	privately?		A:	Yes!	Using	RSA.

� Alice	generates	(n,e)	and	d.		She	announces	(n,e).
� Bob	generates	(n’,e’)	and	d’.		He	announces	(n’,e’).
� Bob	sends	to	Alice:	Bob	encrypts	with	(n,e);	Alice	
decrypts	with	d

� Alice	sends	to	Bob:	Alice	encrypts	with	(n’,e’);	Bob	
decrypts	with	d’



Application: Digital Signatures
� Alice wants to sign a message M=“Alice transfers 100 

Bitcoins to Bob”.  Goal: Everyone can verify her 
signature, but nobody  can forge it.

� Q:	Can	this	be	done?		A:	Yes!	Using	RSA.
� When	joining	a	network,	Alice	generates	(n,e)	and	d.		She	
announces	(n,e).

� For each transaction M, Alice sends out M’ = Md mod n
� Everyone	else	can	verify	Alice’s	signature	by	checking	that	
(M’)e mod n = M

� (In	Bitcoin	a	person’s	public	key	is	their	only identifier)



Some Examples (with Numbers)



RSA Encryption
� To encrypt a message using RSA using a key (n,e) :

i. Translate the plaintext message M into sequences of two digit integers representing the 
letters.  Use 00 for A, 01 for B, etc.

ii. Concatenate the two digit integers into strings of digits. 
iii. Divide this string into equally sized blocks of 2N digits where 2N is the largest even 

number 2525…25 with 2N digits that does not exceed n. 
iv. The plaintext message M is now a sequence of  integers m1,m2,…,mk.
v. Each block  (an integer) is encrypted using the function C=	Memod n.

Example: Encrypt the message STOP using the RSA cryptosystem with key(2537,13). 
� 2537 = 43∙ 59,
� p = 43 and q = 59 are primes and gcd(e,(p−1)(q −1))	= gcd(13, 42∙ 58)	=	1.	
Solution:	Translate	the	letters	in	STOP	to	their	numerical	equivalents	18	19		14	15.
� Divide	into	blocks	of	four	digits	(because	2525	<	2537	<	252525)	to	obtain	1819	1415.
� Encrypt	each	block	using	the	mapping	C=	M13 mod 2537.
� Since	181913 mod	2537	=	2081	and	141513 mod	2537	=	2182,	the	encrypted	message	is	
2081	2182.



RSA Decryption
� To decrypt a RSA ciphertext message, the decryption key d, an inverse of e

modulo (p−1)(q −1)	is	needed.	The	inverse	exists	since	gcd(e,(p−1)(q −1))	=
gcd(13, 42∙ 58)	=	1.

� With	the	decryption	key	d,	we	can	decrypt	each	block		with	the	computation						
M=	Cd mod p∙q.	

� RSA works as a public key system since the only known method of finding d is 
based on a factorization of n into primes. There is currently no known feasible 
method for factoring large numbers into primes.
Example: The message  0981	0461	is received. What is the decrypted message 
if it was encrypted using the RSA cipher from the previous example. 
Solution:	The	message	was	encrypted	with	n = 43∙ 59	and	exponent	13.	An	
inverse	of			13	modulo	42∙ 58	=	2436	(exercise 2	in Section 4.4)	is	d =	937.
� To	decrypt	a	block	C,	M=	C937 mod 2537.
� Since	0981937 mod 2537	=	0704	and	0461937 mod 2537	=	1115,	the	decrypted	
message	is	0704	1115.		Translating	back	to	English	letters,	the	message	is	HELP.



Cryptographic Protocols: Digital Signatures
Adding a digital signature to a message is a way of ensuring the 
recipient that the message came from the purported sender.

� Suppose that Alice’s RSA public key is (n,e) and her private key is 
d. Alice encrypts a plain text message x using E(n,e) (x)= xdmod n. 
She decrypts a ciphertext message  y using D(n,e) (y)= yd mod n. 

� Alice wants to send a message M so that everyone who receives 
the message knows that it came from her.

1. She translates the message to numerical equivalents  and splits 
into blocks, just as in RSA encryption.

2. She then applies her decryption function D(n,e) to the blocks  and 
sends the results to all intended recipients.

3. The recipients apply Alice’s encryption function and the result is 
the original plain text since E(n,e) (D(n,e) (x))= x. 

Everyone who receives the message can then be certain that it 
came from Alice.



Cryptographic Protocols: Digital Signatures
Example: Suppose Alice’s RSA cryptosystem is the same as in the earlier 
example with  key(2537,13), 2537 = 43∙ 59, p = 43 and q = 59 are primes and                                                 
gcd(e,(p−1)(q −1))	= gcd(13, 42∙ 58)	=	1.	
Her decryption key is d = 937.
She wants to send the message “MEET AT NOON” to her friends so that they 

can be certain that the message is from her.
Solution: Alice translates the message into blocks of digits 1204	0419	0019	
1314	1413.

1. She then applies her decryption transformation D(2537,13) (x)= x937mod 2537
to each block. 

2. She finds (using her laptop, programming skills, and knowledge of discrete 
mathematics) that 1204937	mod 2537	=	817,	419937	mod 2537	=	555	,		19937	
mod 2537	=	1310,	1314937	mod 2537	=	2173,	and	1413937	mod 2537	=	
1026.

3. She sends  0817	0555	1310	2173	1026.
When one of her friends receive the message, they apply Alice’s encryption 
transformation E(2537,13) to each block. They then obtain the original message 
which they translate back to English letters.


