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Basic Counting Principles: The Product 
Rule

The Product Rule: A procedure can be broken down 
into a sequence of two tasks. There are n1 ways to do 
the first task and n2 ways to do the second task. Then 
there are n1·n2 ways to do the procedure.

Example: How many bit strings of length seven are 
there?
Solution: Since each of the seven bits is either a 0 or a 
1, the answer is 27 = 128.



The Product Rule
Example: How many different license plates can be 
made if each plate contains a sequence of three 
uppercase English letters followed by three digits?
Solution:  By the product rule,
there	are	26	∙	26	∙	26	∙	10	∙	10	∙	10	=	17,576,000	
different	possible	license	plates.



Counting Functions
Counting Functions: How many functions are there from a set 
with m elements to a set with n elements?
Solution:  Since a function represents a choice of one of the n
elements of the codomain for each of the m elements in the 
domain, the product rule tells us that there are n ∙ n ∙	∙	∙	 n = nm

such functions.

Counting One-to-One Functions: How many one-to-one 
functions are there from a set with m elements to one with n
elements?
Solution: Suppose the elements in the domain are                      
a1, a2,…, am. There are n ways to choose the value of a1	and n−1	
ways to choose a2, etc. The product rule tells us that there are                          
n(n−1) (n−2)∙∙∙(n−m+1)	such	functions.



Telephone Numbering Plan
Example: The North American numbering plan (NANP) specifies that a telephone 
number consists of 10 digits, consisting of a three-digit area code, a three-digit office 
code, and a four-digit station code.  There are some restrictions on the digits.
� Let X denote a digit from 0 through 9.
� Let N denote a digit from 2 through 9.
� Let Y denote a digit that is  0 or 1.
� In the old plan (in use in the 1960s) the format was NYX-NNX-XXX.
� In the new plan, the format is NXX-NXX-XXX.

How many different telephone numbers are possible under the old plan and the new 
plan?

Solution:  Use the Product Rule.
� There are 8	∙2	∙10	= 160 area codes with the format NYX.
� There are  8	∙10	∙10	= 800 area codes with the format NXX. 
� There are 8	∙8	∙10	= 640 office codes with the format NNX.  
� There are  10	∙10	∙10	∙10	= 10,000 station codes with the format XXXX. 

Number of  old plan telephone numbers: 160	∙640	∙10,000	= 1,024,000,000.
Number of new plan telephone numbers: 800	∙800	∙10,000	= 6,400,000,000.



Counting Subsets of a Finite Set
Counting Subsets of a Finite Set: Use the product rule to 
show that the number of different subsets of a finite set S is 
2|S|. (In Section 5.1, mathematical induction was used 
to prove this same result.)
Solution: When the elements of S are listed in an 
arbitrary order, there is a one-to-one correspondence 
between subsets of S and bit strings of length |S|.  When 
the ith element is in the subset, the bit string has a 1 in the 
ith position and a 0 otherwise.

By the product rule, there are  2|S| such bit strings, and 
therefore 2|S| subsets.



Product Rule in Terms of Sets
� If A1, A2, … ,	Am are finite sets, then the number of 

elements in the Cartesian product of these sets is the 
product of the number of elements of each set.

� The task of choosing an element in the Cartesian 
product A1 ⨉	A2 ⨉	∙∙∙	⨉	Am is done by choosing an 
element in A1,	an element in A2 ,	…,	and	an	element	
in	Am.	

� By the product rule, it follows that:
|A1 ⨉	A2 ⨉	∙∙∙	⨉	Am |= |A1| ∙ |A2| ∙ ∙∙∙		∙	|Am|. 



DNA and Genomes
� A gene is a segment of a DNA molecule that encodes a particular 

protein and the entirety of genetic information of an organism is called 
its genome.

� DNA molecules consist of two strands of blocks known as nucleotides. 
Each nucleotide is composed of bases: adenine (A), cytosine (C), 
guanine (G), or thymine (T). 

� The DNA of bacteria has between 105 and 107 links (one of the four 
bases). Mammals have between 108 and 1010 links. So, by the product 
rule there are at least  4105 different  sequences of bases in the DNA of 
bacteria and 4108 different sequences of bases in the DNA of mammals.

� The human genome includes approximately 23,000 genes, each with 
1,000 or more links.

� Biologists, mathematicians, and computer scientists all work on  
determining the DNA sequence (genome) of different organisms. 



Basic Counting Principles:  The Sum Rule
The Sum Rule: If a task can be done either in one of n1
ways or in one of  n2, where none of the set of n1 ways is the 
same as any of the  n2 ways,  then there are n1	+ n2 ways  to 
do the task.
Example:  The mathematics department must choose 
either a student or a faculty member as a representative for 
a university committee. How many choices are there for 
this representative if there are 37 members of the 
mathematics faculty and 83 mathematics majors and no 
one is both a faculty member and a student.
Solution: By the sum rule it follows that there are                    
37 + 83 = 120 possible ways to pick a representative.



The Sum Rule in terms of sets.
� The sum rule can be phrased in terms of sets.

|A ∪	B|= |A| + |B| when A and B are disjoint.
� Or more generally,

|A1 ∪	A2 ∪	∙∙∙	∪	Am |= |A1| + |A2| + ∙∙∙	+ |Am| 
when Ai ∩	Aj =	∅	for all i, j.



Combining the Sum and Product 
Rule

Example: Suppose statement labels in a programming 
language can be either a single letter or a letter 
followed by a digit. Find the number of possible labels.
Solution:  Use the product rule.
26 + 26	∙ 10 = 286



Counting Passwords
� Combining the sum and product rule allows us to solve more complex problems.

Example: Each user on a computer system has a password, which is six to eight 
characters long, where each character is an uppercase letter or a digit. Each password 
must contain at least one digit. How many possible passwords are there?

Solution:  Let P be the total number of passwords, and let P6, P7, and P8 be the 
passwords of length 6, 7, and 8. 
� By the sum rule |P| = |P6|+|P7|+P8|
� To find each of P6, P7, and P8 , we find the number of passwords of the specified length 

composed of letters and digits and subtract the number composed only of letters. We find 
that:

P6 = 366 − 266 =2,176,782,336	− 308,915,776 =1,867,866,560.
P7 = 367 − 267 =

78,364,164,096	− 8,031,810,176 =  70,332,353,920.
P8 = 368 − 268 =

2,821,109,907,456	− 208,827,064,576 =2,612,282,842,880.

Consequently, P = P6 + P7 +P8 = 2,684,483,063,360.



Internet Addresses
� Version 4 of the Internet Protocol (IPv4) uses 32 bits.

� Class A Addresses: used for the largest networks, a 0,followed by a 7-bit netid
and a 24-bit hostid.

� Class B Addresses: used for the medium-sized networks, a 10,followed by a 
14-bit netid and a 16-bit hostid.

� Class C Addresses: used for the smallest networks, a 110,followed by a 21-bit 
netid and a 8-bit hostid.
� Neither Class D nor Class E addresses are assigned as the address of a computer 

on the internet. Only Classes A, B, and C are available. 
� 1111111 is not available as the netid of a Class A network.
� Hostids consisting of all 0s and all 1s are not available in any network. 



Counting Internet Addresses
Example: How many different IPv4 addresses are available for 
computers on the internet?
Solution: Use both the sum and the product rule. Let x be the number 
of available addresses, and let xA, xB, and xC denote the number of 
addresses for the respective classes.
� To find, xA: 27 −	1	=	127	netids.	224 −	2	=	16,777,214	hostids.	

xA = 127∙	16,777,214	=	2,130,706,178.
� To find, xB: 214 =	16,384	netids.	216 −	2	=	16,534	hostids.	

xB = 16,384	∙	16,	534	=	1,073,709,056.
� To find, xC: 221 =	2,097,152	netids.	28 −	2	=	254	hostids.	

xC = 2,097,152	∙	254	=	532,676,608.
� Hence, the total number of available IPv4 addresses is

x = xA +  xB + xC
= 2,130,706,178	+	1,073,709,056	+	532,676,608
=	3,	737,091,842. Not Enough Today !!

The newer IPv6 protocol solves the problem 
of too few addresses.



Basic Counting Principles: 
Subtraction Rule

Subtraction Rule: If a task can be done either in one 
of n1 ways or in one of  n2 ways, then the total number 
of ways to do the task is  n1	+ n2 minus the number of 
ways  to do the task that are common to the two 
different ways.

� Also known as, the principle of inclusion-exclusion:



Counting Bit Strings
Example: How many bit strings of length eight either 
start with a 1 bit or end with the two bits 00?
Solution:  Use the subtraction rule.
� Number of bit strings of length eight                                    

that start with a 1 bit:  27 = 128
� Number of bit strings of length eight                                    

that end with bits 00:  26 = 64
� Number of bit strings of length eight                                

that start with a 1 bit and end with bits 00	:  25 = 32
Hence,	the	number	is	128	+	64	−	32	=	160.



Basic Counting Principles: Division 
Rule

Division Rule: There are n/d ways to do a task if it can be done using a procedure that can 
be carried out in n ways, and for every way w, exactly d of the n ways correspond to way 
w. 

� Restated in terms of sets: If the finite set A is the union of n pairwise disjoint subsets 
each with d elements, then n = |A|/d.

� In terms of functions: If f is a function from A to B, where both are finite sets, and for 
every value y ∈ B there are exactly d values x ∈ A such that f(x) = y, then   |B| = |A|/d.

Example: How many ways are there to seat four people around a circular table, where two 
seatings are considered the same when each person has the same left  and right 
neighbor?
Solution: Number the seats around the table from 1 to 4 proceeding clockwise. There are 
four ways to select the person for seat 1, 3 for seat 2, 2, for seat 3, and one way for seat 4. 
Thus there are 4! = 24 ways to order the four people. But since two seatings are the same 
when each person has the same left and right neighbor, for every choice for seat 1, we get 
the same seating. 

Therefore, by the division rule, there are 24/4 = 6 different seating arrangements. 



Tree Diagrams
� Tree Diagrams:  We can solve many counting problems through the 

use of tree diagrams, where   a branch represents a possible choice and 
the leaves represent possible outcomes. 

� Example: Suppose that “I Love Discrete Math” T-shirts come in five 
different sizes: S,M,L,XL, and XXL. Each size comes in four colors 
(white, red, green, and black), except XL, which comes only in red, 
green, and black, and XXL, which comes only in green and black. What 
is the minimum number of shirts that the campus book store needs to 
stock to have one of each size and color available?

� Solution: Draw the tree diagram.

� The store must stock 17	T-shirts.
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Section Summary
� The Pigeonhole Principle
� The Generalized Pigeonhole Principle



The Pigeonhole Principle
� If a flock of 20 pigeons roosts in a set of  19	pigeonholes, one of 

the pigeonholes must have more than 1 pigeon.

Pigeonhole Principle: If k is a positive integer and k + 1 objects 
are placed into k boxes, then at least one box contains two or 
more objects. 
Proof: We use a proof  by contraposition. Suppose none of the k
boxes has more than one object. Then the total number of 
objects would be at most k. This contradicts the statement that 
we have k + 1 objects.



The Pigeonhole Principle
Corollary 1: A function f from a set with k + 1
elements to a set with k elements is not one-to-one.
Proof: Use the pigeonhole principle.
� Create a box for each element y in the codomain of f .
� Put in the box for y all of the elements x from the 

domain such that f(x) = y.  
� Because there are k + 1 elements and only k boxes, at 

least one box has two or more elements. 
Hence, f can’t be one-to-one.



Pigeonhole Principle
Example: Among any group of 367 people, there must be at least 
two with the same birthday, because there are only 366 possible 
birthdays.

Example: Show that for every integer n there is a multiple of n
that has only 0s and 1s in its decimal expansion. 
Solution: Let n be a positive integer. Consider the n + 1 integers 
1, 11, 111, …., 11…1 (where the last has n + 1	1s). There are n
possible remainders when an integer is divided by n. By the 
pigeonhole principle, when each of the n + 1 integers is divided 
by n, at least two must have the same remainder. Subtract the 
smaller from the larger and the result is a multiple of n that has 
only 0s and 1s in its decimal expansion. 



The Generalized Pigeonhole Principle
The Generalized Pigeonhole Principle: If N objects are 
placed into k boxes, then there is at least one box 
containing at least ⌈N/k⌉ objects.
Proof: We use a proof by contraposition. Suppose that 
none of the boxes contains more than ⌈N/k⌉ −	1	objects. 
Then the total number of objects is at most

where the inequality ⌈N/k⌉ < ⌈N/k⌉ + 1 has been used. This 
is a contradiction because there are a total of n objects.

Example: Among 100 people there are at least           
⌈100/12⌉	=	9 who were born in the same month.



The Generalized Pigeonhole Principle
Example:  a) How many cards must be selected from a standard 
deck of 52 cards to guarantee that at least three cards of the 
same suit are chosen? 
b) How many must be selected to guarantee that at least three 
hearts are selected?
Solution: a) We assume four boxes; one for each suit. Using the 
generalized pigeonhole principle, at least one box contains at 
least ⌈N/4⌉ cards. At least three cards of one suit are selected if 
⌈N/4⌉ ≥3. The smallest integer N such that ⌈N/4⌉ ≥3	is
N =	2	∙	4	+	1	=	9.
b)	A	deck	contains	13	hearts	and	39	cards	which	are	not	hearts.	
So,	if	we	select	41	cards,	we	may	have	39	cards	which	are	not	
hearts	along	with	2	hearts.	However,	when	we	select	42	cards,	we	
must	have	at	least	three	hearts.	(Note	that	the	generalized	
pigeonhole	principle	is	not	used	here.)



Section 6.3



Section Summary
� Permutations
� Combinations
� Combinatorial Proofs



Permutations
Definition: A permutation of a set of distinct objects 
is an ordered arrangement of these objects. An ordered 
arrangement of r elements of a set is called an                      
r-permuation.
Example: Let S = {1,2,3}. 
� The ordered arrangement 3,1,2 is a permutation of S.
� The ordered arrangement 3,2 is a 2-permutation of S.

� The number of r-permuatations of a set with n
elements is denoted by P(n,r).
� The 2-permutations of S = {1,2,3} are 1,2;	1,3;	2,1;	2,3;	
3,1;	and	3,2.	Hence,	P(3,2)	=	6.



A Formula for the Number of 
Permutations

Theorem 1: If n is a positive integer and r is an integer with            
1 ≤ r ≤ n, then there are

P(n, r) = n(n − 1)(n − 2) ∙∙∙ (n − r + 1)
r-permutations of a set with n distinct elements.
Proof: Use the product rule. The first element can be chosen in n
ways. The second in n − 1	ways,	and	so	on	until	there	are													
(n − ( r − 1)) ways to choose the last element.

� Note that P(n,0) = 1, since there is only one way to order zero 
elements.
Corollary 1: If n and r are integers with 1 ≤ r ≤ n, then



Solving Counting Problems by 
Counting Permutations

Example: How many ways are there to select a first-
prize winner, a second prize winner, and a third-prize 
winner from 100 different people who have entered a 
contest?

Solution: 
P(100,3) = 100 ∙ 99	∙ 98 = 970,200



Solving Counting Problems by 
Counting Permutations (continued)

Example: Suppose that a saleswoman has to visit eight 
different cities. She must begin her trip in a specified 
city, but she can visit the other seven cities in any order 
she wishes. How many possible orders can the 
saleswoman use when visiting these cities?

Solution: The first city is chosen, and the rest are 
ordered arbitrarily. Hence the orders are:

7! = 7 ∙ 6 ∙ 5	∙ 4	∙ 3 ∙ 2 ∙ 1	= 5040
If	she	wants	to	find	the	tour	with	the	shortest	path	that	
visits	all	the	cities,	she	must	consider	5040	paths!



Solving Counting Problems by 
Counting Permutations (continued)

Example: How many permutations of the letters 
ABCDEFGH contain the string ABC ?

Solution: We solve this problem by counting the 
permutations of six objects, ABC, D, E, F, G, and H.

6! = 6 ∙ 5	∙ 4	∙ 3 ∙ 2 ∙ 1	= 720



Combinations
Definition: An r-combination of elements of a set is an 
unordered selection of r elements from the set. Thus, an    
r-combination is simply a subset of the set with r elements.

� The number of r-combinations of a set with n distinct 
elements is denoted by C(n, r). The notation          is also 
used and is called a binomial coefficient. 
Example: Let S be the set {a, b, c, d}. Then {a, c, d} is a 3-
combination from S. It is the same as {d, c, a} since the 
order listed does not matter.

� C(4,2) = 6	because	the	2-combinations	of	{a, b, c, d} are the 
six subsets {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}. 



Combinations
Theorem 2: The number of r-combinations of a set 
with n elements, where n ≥ r≥	0,	equals

Proof:		By	the	product	rule	P(n, r) = C(n,r) · P(r,r). 
Therefore, 



Combinations
Example: How many poker hands of five cards can be dealt 
from a standard deck of 52 cards? Also, how many ways are 
there to select 47 cards from a deck of 52 cards?
Solution: Since the order in which the cards are dealt does 
not matter, the number of five card hands is:

� The different ways to select 47 cards from 52 is

This is a special case of a general result. →



Combinations
Corollary 2: Let n and r be nonnegative integers with     
r ≤	n. Then C(n, r) = C(n, n −	r).
Proof:	From	Theorem	2,	it	follows	that

and	

Hence, C(n, r) = C(n, n −	r).

This result can be proved without using algebraic manipulation. →



Combinatorial Proofs
� Definition 1: A combinatorial proof of an identity is a 

proof that  uses one of the following methods.
� A double counting proof uses counting arguments to 

prove that both sides of an identity count the same 
objects, but in different ways.

� A bijective proof  shows  that there is a bijection between 
the sets of objects counted by the two sides of the 
identity.



Combinatorial Proofs
� Here are two combinatorial proofs that 

C(n, r) = C(n, n −	r)	
when	r	and	n	are	nonnegative	integers	with	r <	n:
� Bijective Proof: Suppose that S is a set with n elements. The 

function that maps a subset A of S to      is a bijection between 
the subsets of S with r elements and the subsets with n −	r
elements.	Since	there	is	a	bijection between	the	two	sets,	they	
must	have	the	same	number	of	elements.	

� Double Counting Proof: By definition the number of subsets 
of S with r elements is C(n, r). Each subset A of S can also be 
described by specifying which elements are not in A, i.e., 
those which are  in     . Since the complement of a subset of S 
with r elements has n −	r elements,	there	are	also	C(n, n −	r)	
subsets	of	S	with	r elements.



Combinations
Example: How many ways are there to select five players 
from a 10-member tennis team to make a trip to a match at 
another school.
Solution: By Theorem 2, the number of combinations is

Example: A group of 30	people have been trained as 
astronauts to go on the first mission to Mars. How many 
ways are there to select a crew of six people to go on this 
mission?
Solution: By Theorem 2, the number of possible crews is
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Section Summary
� The Binomial Theorem 
� Pascal’s Identity and Triangle



Powers of Binomial Expressions
Definition: A binomial expression is the sum of two terms, such as x + y. (More 
generally, these terms can be products of constants and variables.)

� We  can use counting principles to find the coefficients in the expansion of (x + y)n where 
n is a positive integer. 

� To illustrate this idea, we first look at the process of expanding (x + y)3.
� (x + y) (x + y) (x + y) expands  into a sum of terms that are the product of a term from 

each of the three sums.
� Terms	of	the	form	x3, x2y,	x y2, y3 arise.	The	question	is	what	are	the	coefficients?

� To	obtain	x3	,	an	xmust	be	chosen	from	each	of	the	sums.	There	is	only	one	way	to	do	this.	
So,	the	coefficient	of x3	 is	1.	

� To	obtain	x2y,	an	xmust	be	chosen	from	two	of	the	sums	and	a	y from	the	other.	There						
are											ways	to	do	this		and	so	the	coefficient	of	x2y is	3.	

� To	obtain	xy2,	an	xmust	be	chosen	from		of	the	sums	and	a	y from	the	other	two	.	There		
are										ways	to	do	this		and	so	the	coefficient	of xy2 is	3.	

� To	obtain	y3	,	a	ymust	be	chosen	from	each	of	the	sums.	There	is	only	one	way	to	do	this.	So,	
the	coefficient	of y3 is	1.	

� We have used a counting argument to show that (x + y)3 = x3 +  3x2y + 3x y2 + y3 .
� Next	we	present	the	binomial	theorem	gives	the	coefficients	of	the	terms	in	the	expansion	

of	(x + y)n .			



Binomial Theorem 
Binomial Theorem: Let x and y be variables, and n a 
nonnegative integer. Then:

Proof: We use combinatorial reasoning . The terms in 
the expansion of (x + y)n are of the form xn−jyj for                  
j = 0,1,2,…,n. To form the term xn−jyj, it is necessary to 
choose  n−j xs from the n sums. Therefore,  the 
coefficient of xn−jyj is             which equals       .



Using the Binomial Theorem
Example: What is the coefficient of x12y13 in the 
expansion of (2x − 3y)25?
Solution: We view the expression as (2x +(−3y))25.        
By the binomial theorem

Consequently,	the	coefficient	of	x12y13 in	the	expansion	
is	obtained	when	j =	13.



A Useful Identity
Corollary 1: With n ≥0,

Proof (using binomial theorem): With x = 1 and y = 1, from the 
binomial theorem we see that:

Proof (combinatorial): Consider the subsets of a set with n elements. 
There are        subsets with zero elements,       with one element,       
with two elements, …, and       with n elements. Therefore the total is

Since, we know that a set with n elements has 2n subsets, we conclude:



Pascal’s Identity 
Pascal’s Identity: If n and k are integers with n ≥ k ≥ 0, then  

Proof (combinatorial): Let T be a set where |T| = n + 1, a ∊T, and 
S = T − {a}.  There are          subsets of T containing k elements. 
Each of these subsets either:
� contains a with k− 1 other elements, or 
� contains k elements of S and not a.

There are 
� subsets	of	k elements	that	contain	a,	since	there	are

subsets of   k− 1	elements	of	S,	
� subsets	of	k elements	of	T that	do	not	contain	a,	because	there	
are							subsets	of	k	elements	of	S.

Hence,		

Blaise Pascal
(1623-1662)


