CS 362, Lecture 2

Jared Saia University of New Mexico

Today's Outline ____

- L'Hopital's Rule
- Log Facts
- Recurrence Relation Review
- Recursion Tree Method
- Master Method

L'Hopital _____

For any functions f(n) and g(n) which approach infinity and are differentiable, L'Hopital tells us that:

•
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

Example ____

- Q: Which grows faster $\ln n$ or \sqrt{n} ?
- Let $f(n) = \ln n$ and $g(n) = \sqrt{n}$
- Then f'(n) = 1/n and $g'(n) = (1/2)n^{-1/2}$
- So we have:

$$\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1/n}{(1/2)n^{-1/2}} \tag{1}$$

$$= \lim_{n \to \infty} \frac{2}{n^{1/2}} \tag{2}$$

$$= 0 (3)$$

• Thus \sqrt{n} grows faster than $\ln n$ and so $\ln n = O(\sqrt{n})$

___ A digression on logs ____

It rolls down stairs alone or in pairs, and over your neighbor's dog, it's great for a snack or to put on your back, it's log, log, log!

- "The Log Song" from the Ren and Stimpy Show
 - The log function shows up very frequently in algorithm analysis
 - As computer scientists, when we use log, we'll mean log_2 (i.e. if no base is given, assume base 2)

Definition _____

- $\bullet \, \log_x y$ is by definition the value z such that $x^z = y$
- $x^{\log_x y} = y$ by definition

Examples ____

- $\log 1 = 0$
- $\log 2 = 1$
- $\log 32 = 5$
- $\log 2^k = k$

Note: $\log n$ is way, way smaller than n for large values of n

Examples ____

- $\log_3 9 = 2$
- $\log_5 125 = 3$
- $\log_4 16 = 2$
- $\log_{24} 24^{100} = 100$

Facts about exponents _____

Recall that:

- $\bullet (x^y)^z = x^{yz}$
- $\bullet \ x^y x^z = x^{y+z}$

From these, we can derive some facts about logs

Facts about logs _____

To prove both equations, raise both sides to the power of 2, and use facts about exponents

- Fact 1: $\log(xy) = \log x + \log y$
- Fact 2: $\log a^c = c \log a$

Memorize these two facts

Incredibly useful fact about logs _____

• Fact 3: $\log_c a = \log a / \log c$

To prove this, consider the equation $a = c^{\log_c a}$, take \log_2 of both sides, and use Fact 2. **Memorize this fact**

Log facts to memorize _____

- Fact 1: $\log(xy) = \log x + \log y$
- Fact 2: $\log a^c = c \log a$
- Fact 3: $\log_c a = \log a / \log c$

These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)

Logs and O notation ____

- Note that $\log_8 n = \log n / \log 8$.
- Note that $\log_{600} n^{200} = 200 * \log n / \log 600$.
- Note that $\log_{100000} 30*n^2 = 2*\log n/\log 100000 + \log 30/\log 100000$
- Thus, $\log_8 n$, $\log_{600} n^{600}$, and $\log_{100000} 30*n^2$ are all $O(\log n)$
- In general, for any constants k_1 and k_2 , $\log_{k_1} n^{k_2} = k_2 \log n / \log k_1$, which is just $O(\log n)$

Take Away ____

- All log functions of form $k_1 \log_{k_2} k_3 * n^{k_4}$ for constants k_1 , k_2 , k_3 and k_4 are $O(\log n)$
- For this reason, we don't really "care" about the base of the log function when we do asymptotic notation
- Thus, binary search, ternary search and k-ary search all take $O(\log n)$ time

Important Note __

- $\log^2 n = (\log n)^2$
- $\log^2 n$ is $O(\log^2 n)$, not $O(\log n)$
- \bullet This is true since $\log^2 n$ grows asymptotically faster than $\log n$
- All log functions of form $k_1 \log_{k_3}^{k_2} k_4 * n^{k_5}$ for constants k_1 , k_2 , k_3 , k_4 and k_5 are $O(\log^{k_2} n)$

In-Class Exercise _____

Simplify and give O notation for the following functions. In the big-O notation, write all logs base 2:

- $\log 10n^2$
- $\log^2 n^4$
- $2^{\log_4 n}$
- $\log \log \sqrt{n}$

Recurrences and Inequalities ____

- Often easier to prove that a recurrence is no more than some quantity than to prove that it equals something
- Consider: f(n) = f(n-1) + f(n-2), f(1) = f(2) = 1
- "Guess" that $f(n) \leq 2^n$

Inequalities (II) _____

Goal: Prove by induction that for f(n) = f(n-1) + f(n-2), f(1) = f(2) = 1, $f(n) \le 2^n$

- Base case: $f(1) = 1 \le 2^1$, $f(2) = 1 \le 2^2$
- Inductive hypothesis: for all j < n, $f(j) \le 2^{j}$
- Inductive step:

$$f(n) = f(n-1) + f(n-2)$$
 (4)

$$\leq 2^{n-1} + 2^{n-2} \tag{5}$$

$$< 2 * 2^{n-1}$$
 (6)

$$= 2^n \tag{7}$$

Recursion-tree method _____

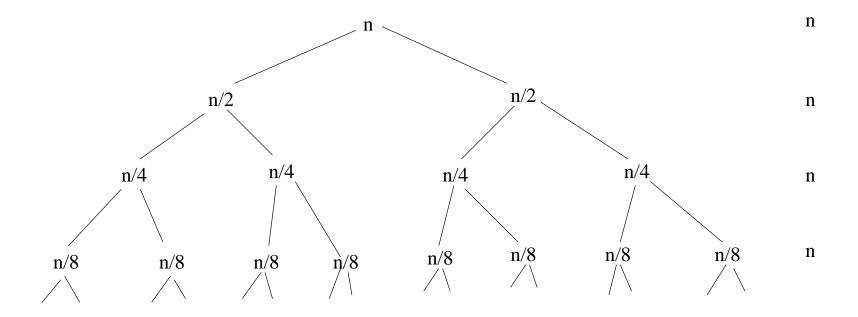
- Each node represents the cost of a single subproblem in a recursive call
- First, we sum the costs of the nodes in each level of the tree
- Then, we sum the costs of all of the levels

Recursion-tree method ____

- Used to get a good guess which is then refined and verified using substitution method
- ullet Best method (usually) for recurrences where a term like T(n/c) appears on the right hand side of the equality

Example 1 _____

• Consider the recurrence for the running time of Mergesort: T(n) = 2T(n/2) + n, T(1) = O(1)

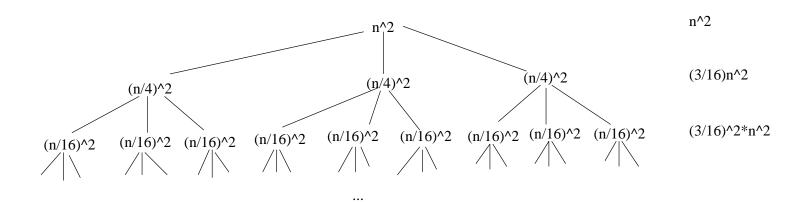


Example 1 ____

- We can see that each level of the tree sums to n
- Further the depth of the tree is $\log n$ $(n/2^d = 1$ implies that $d = \log n$).
- ullet Thus there are $\log n + 1$ levels each of which sums to n
- Hence $T(n) = \Theta(n \log n)$

Example 2 ____

- Let's solve the recurrence $T(n) = 3T(n/4) + n^2$
- Note: For simplicity, from now on, we'll assume that $T(i) = \Theta(1)$ for all small constants i. This will save us from writing the base cases each time.



Example 2 ____

- We can see that the *i*-th level of the tree sums to $(3/16)^i n^2$.
- Further the depth of the tree is $\log_4 n$ $(n/4^d=1)$ implies that $d=\log_4 n$
- So we can see that $T(n) = \sum_{i=0}^{\log_4 n} (3/16)^i n^2$

Solution ____

$$T(n) = \sum_{i=0}^{\log_4 n} (3/16)^i n^2$$

$$< n^2 \sum_{i=0}^{\infty} (3/16)^i$$
(9)

$$< n^2 \sum_{i=0}^{\infty} (3/16)^i$$
 (9)

$$= \frac{1}{1 - (3/16)} n^2 \tag{10}$$

$$= O(n^2) \tag{11}$$

Master Theorem ____

 Divide and conquer algorithms often give us running-time recurrences of the form

$$T(n) = a T(n/b) + f(n)$$
(12)

- Where a and b are constants and f(n) is some other function.
- The so-called "Master Method" gives us a general method for solving such recurrences when f(n) is a simple polynomial.

Master Theorem _____

- ullet Unfortunately, the Master Theorem doesn't work for all functions f(n)
- Further many useful recurrences don't look like T(n)
- However, the theorem allows for very fast solution of recurrences when it applies

Master Theorem ____

- Master Theorem is just a special case of the use of recursion trees
- Consider equation T(n) = a T(n/b) + f(n)
- We start by drawing a recursion tree

The Recursion Tree __

- The root contains the value f(n)
- It has a children, each of which contains the value f(n/b)
- ullet Each of these nodes has a children, containing the value $f(n/b^2)$
- ullet In general, level i contains a^i nodes with values $f(n/b^i)$
- Hence the sum of the nodes at the *i*-th level is $a^i f(n/b^i)$

Details _____

- The tree stops when we get to the base case for the recurrence
- We'll assume $T(1) = f(1) = \Theta(1)$ is the base case
- \bullet Thus the depth of the tree is $\log_b n$ and there are $\log_b n + 1$ levels

Recursion Tree _____

• Let T(n) be the sum of all values stored in all levels of the tree:

$$T(n) = f(n) + a f(n/b) + a^2 f(n/b^2) + \dots + a^i f(n/b^i) + \dots + a^L f(n/b^L)$$

- ullet Where $L = \log_b n$ is the depth of the tree
- Since $f(1) = \Theta(1)$, the last term of this summation is $\Theta(a^L) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a})$

____ A "Log Fact" Aside ____

• It's not hard to see that $a^{\log_b n} = n^{\log_b a}$

$$a^{\log_b n} = n^{\log_b a} \tag{13}$$

$$a^{\log_b n} = a^{\log_a n * \log_b a} \tag{14}$$

$$\log_b n = \log_a n * \log_b a \tag{15}$$

- ullet We get to the last eqn by taking \log_a of both sides
- The last eqn is true by our third basic log fact

Master Theorem _____

- We can now state the Master Theorem
- We will state it in a way slightly different from the book
- Note: The Master Method is just a "short cut" for the recursion tree method. It is less powerful than recursion trees.

Master Method _____

The recurrence T(n) = aT(n/b) + f(n) can be solved as follows:

- If $a f(n/b) \le K f(n)$ for some constant K < 1, then $T(n) = \Theta(f(n))$.
- If $a f(n/b) \ge K f(n)$ for some constant K > 1, then $T(n) = \Theta(n^{\log_b a})$.
- If a f(n/b) = f(n), then $T(n) = \Theta(f(n) \log_b n)$.

Proof ____

- If f(n) is a constant factor larger than a f(n/b), then the sum is a descending geometric series. The sum of any geometric series is a constant times its largest term. In this case, the largest term is the first term f(n).
- If f(n) is a constant factor smaller than a f(n/b), then the sum is an ascending geometric series. The sum of any geometric series is a constant times its largest term. In this case, this is the last term, which by our earlier argument is $\Theta(n^{\log_b a})$.
- Finally, if a f(n/b) = f(n), then each of the L+1 terms in the summation is equal to f(n).

Example _____

- T(n) = T(3n/4) + n
- If we write this as T(n) = aT(n/b) + f(n), then a = 1,b = 4/3, f(n) = n
- Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of 4/3, so $T(n) = \Theta(n)$

Example ____

- ullet Karatsuba's multiplication algorithm: T(n) = 3T(n/2) + n
- If we write this as T(n) = aT(n/b) + f(n), then a = 3,b = 2, f(n) = n
- Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of 3/2, so $T(n) = \Theta(n^{\log_2 3})$

Example _____

- Mergesort: T(n) = 2T(n/2) + n
- If we write this as T(n) = aT(n/b) + f(n), then a = 2,b = 2, f(n) = n
- Here a f(n/b) = f(n), so $T(n) = \Theta(n \log n)$

Example _____

- $T(n) = T(n/2) + n \log n$
- If we write this as T(n) = aT(n/b) + f(n), then $a = 1,b = 2, f(n) = n \log n$
- Here $a f(n/b) = n/2 \log n/2$ is smaller than $f(n) = n \log n$ by a constant factor, so $T(n) = \Theta(n \log n)$

In-Class Exercise __

- ullet Consider the recurrence: $T(n) = 4T(n/2) + n\lg n$
- Q: What is f(n) and a f(n/b)?
- Q: Which of the three cases does the recurrence fall under (when n is large)?
- Q: What is the solution to this recurrence?

In-Class Exercise __

- ullet Consider the recurrence: $T(n) = 2T(n/4) + n\lg n$
- Q: What is f(n) and a f(n/b)?
- Q: Which of the three cases does the recurrence fall under (when n is large)?
- Q: What is the solution to this recurrence?

Take Away ____

- Recursion tree and Master method are good tools for solving many recurrences
- However these methods are limited (they can't help us get guesses for recurrences like f(n) = f(n-1) + f(n-2))
- For info on how to solve these other more difficult recurrences, review the notes on annihilators on the class web page.

____ Todo ____

- Read Chapter 3 and 4 in the text
- Work on Homework 1