CS 362, Lecture 2

Jared Saia
University of New Mexico

—

L'"Hopital's Rule

Log Facts

Recurrence Relation Review
Recursion Tree Method
Master Method

Today’'s Outline ——

— L'Hopital ———

For any functions f(n) and g(n) which approach infinity and are
differentiable, L'Hopital tells us that:

f(n) _ f'(n)

e Iim = |lim AL
=90 g(n) =0 ¢'(n)

Example

——
e QQ: Which grows faster Inn or \/n?
e Let f(n) =Inn and g(n) = +/n
e Then f'(n) =1/n and ¢'(n) = (1/2)n"1/2
e SO we have:
Inn 1/n
im — = Iim 1
n—oo | /n n— 00 (1/2)n—1/2 (1)
_ 2
= 0 (3)
e Thus y/n grows faster than Inn and so Inn = O(y/n)
3

C A digression on logS ———

It rolls down stairs alone or in pairs,

and over your neighbor’s dog,

it's great for a snack or to put on your back,

it's log, log, log!

- “The Log Song"” from the Ren and Stimpy Show

e T he log function shows up very frequently in algorithm anal-
VSIS

e As computer scientists, when we use log, we'll mean log-
(i.e. if no base is given, assume base 2)

C Definition ——

e |09,y is by definition the value z such that z* =y
o 20929 = 4 by definition

Examples —_

—
e l0oOgl1 =0
o lOg2 =1
e l0Og32 =5
o log2k =k

Note: logn is way, way smaller than n for large values of n

—

log39 =2

logs 125 = 3
109416 =2

l0go4 24100 = 100

Examples —_

Facts about exponents

—

Recall that:

o (2¥)* = z¥*
o 1Yp? — pYTz

From these, we can derive some facts about logs

— Facts about 109S ——

To prove both equations, raise both sides to the power of 2, and
use facts about exponents

e Fact 1: log(xy) = logz + logy
e Fact 2: loga® = cloga

Memorize these two facts

o Incredibly useful fact about 10gS ——

e Fact 3: log.a =1oga/logc

To prove this, consider the equation a = ¢/°9:¢, take log, of both
sides, and use Fact 2. Memorize this fact

10

o Log facts to memorizé —

e Fact 1: log(xy) = logz + logy
e Fact 2: loga® = cloga
e Fact 3: log.a =1loga/logc

These facts are sufficient for all your logarithm needs. (You just
need to figure out how to use them)

11

Logs and O notation ——

——
e Note that loggn = logn/log8.
e Note that loggggn2°° = 200 x log n/ log 600.
e Note that 109100000 30%n? = 2xlogn/log 1000004log 30/ log 100000
e Thus, loggn, 0ggo0n®99, and 109100000 30%n2 are all O(log n)
e In general, for any constants k; and kp, l0gy, nk2 = kologn/log k1,

which is just O(logn)

12

— Take Away ——

e All log functions of form ki 109y, ks *nk4 for constants k1, ko,
k3 and ks are O(logn)

e For this reason, we don’t really “care” about the base of the
log function when we do asymptotic notation

e [hus, binary search, ternary search and k-ary search all take
O(logn) time

13

— Important Note ——

e 10g2n = (logn)?

e 10g2n is O(log?n), not O(logn)

e [his is true since Ioan grows asymptotically faster than
logn

e All log functions of form kq Iog]]zg k4>|<nk5 for constants kq, ko,

k3,ka and ks are O(logk2n)

14

o In-Class Exercise —_

Simplify and give O notation for the following functions. In the
big-O notation, write all logs base 2:

e l0g10n2
o l0g2n?
° 2|og4n

e l0glog+/n

15

Recurrences and Inequalities

—

e Often easier to prove that a recurrence is no more than some
quantity than to prove that it equals something

e Consider: f(n)=f(n—1)+ f(n—2), f(1)=f(2)=1
e "“Guess” that f(n) <2©

16

—

Inequalities (II) ——

Goal: Prove by induction that for f(n) = f(n—1) 4+ f(n — 2),
f()y=72)=1, f(n) <27

e Base case: f(1)=1<21 f(2)=1<2°

e Inductive hypothesis:

e Inductive step:

f(n)

for all j <n, f(5) <2J

f(n—1)+ f(n —2)
27?,—1 _I_ 2n—2

2 5 2n—1

2n

A A

(4)
(5)
(6)
(7)

17

C Recursion-tree method ——

e Each node represents the cost of a single subproblem in a

recursive call
e First, we sum the costs of the nodes in each level of the tree

e [hen, we sum the costs of all of the levels

18

C Recursion-tree method ——

e Used to get a good guess which is then refined and verified
using substitution method

e Best method (usually) for recurrences where a term like
T(n/c) appears on the right hand side of the equality

19

— Example 1 —_

e Consider the recurrence for the running time of Mergesort:
T(n) =2T(n/2)+n, T(1) = O(1)

nlz/”\

PN AR

n/4 n/4 n/4 n/4\ n
n/s n/s n/8s \nlg n/8 n/8 n/8 n/8 n

/\ ANANE AN A\ /\

20

— Example 1 —_

e We can see that each level of the tree sums to n

e Further the depth of the tree is logn (n/Qd = 1 implies that
d=1logn).

e T hus there are logn + 1 levels each of which sums to n

e Hence T'(n) = ©(nlogn)

21

— Example 2 —_

e Let's solve the recurrence T(n) = 3T(n/4) + n?
e Note: For simplicity, from now on, we'll assume that T'(7) =
©(1) for all small constants 7. This will save us from writing

the base cases each time.

/ N / A
(n'4)~2 /74)/\\2 }4‘1) 2\ (3/16)M2
/‘ \ (3/16)"2* "2

16’2 (n/16)"2 (n/16)~2 (W16)"2 (n/16)"2

16)"2 16)*2 (n/16)"2 1622
o IR RO N N N AN R

n"2 n2

22

— Example 2 —_

e We can see that the i-th level of the tree sums to (3/16)'n 2,

e Further the depth of the tree is logsn (n/4% = 1 implies that
d = 109y n)

e SO we can see that T'(n) = '094”(3/16)@ 2

23

—

Solution

T(n)

(8)

(9)

(10)

(11)

24

— Master Theorem

e Divide and conquer algorithms often give us running-time
recurrences of the form

T(n) = aT(n/b) + f(n) (12)

e Where a and b are constants and f(n) is some other function.
e [he so-called "Master Method” gives us a general method
for solving such recurrences when f(n) is a simple polynomial.

25

— Master Theorem

e Unfortunately, the Master Theorem doesn’t work for all func-
tions f(n)

e Further many useful recurrences don't look like T'(n)

e However, the theorem allows for very fast solution of recur-
rences when it applies

26

— Master Theorem

e Master Theorem is just a special case of the use of recursion

trees
e Consider equation T'(n) = aT(n/b) + f(n)
e \We start by drawing a recursion tree

27

— T he Recursion Tree ——

e The root contains the value f(n)

e It has a children, each of which contains the value f(n/b)

e Each of these nodes has a children, containing the value
£(n/b?) | |

e In general, level ¢ contains a* nodes with values f(n/b")

e Hence the sum of the nodes at the i-th level is a'f(n/b")

28

— Details —

e T he tree stops when we get to the base case for the recur-
rence

e We'll assume T (1) = f(1) = ©(1) is the base case

e T hus the depth of the tree is logyn and there are logyn + 1
levels

29

Recursion Tree

—

e Let T'(n) be the sum of all values stored in all levels of the
tree:

T(n) = f(n)+a f(n/b)+a? f(n/b)+ - -+a’ f(n/b)+--Fa” f(n/b")

e Where L = logyn is the depth of the tree
e Since f(1) = ©(1), the last term of this summation is ©(al) =

@(alogb n) — @(nlogb a)

30

C A “Log Fact” Aside ———

e It's not hard to see that a'/°9% " = ploga

alogbn — nlogba (13)
alogbn — alogan*logba (14)
logyn = log,n *109,a (15)

e We get to the last egn by taking log, of both sides
e [he last egn is true by our third basic log fact

31

— Master Theorem

e We can now state the Master Theorem

e \We will state it in a way slightly different from the book

e Note: The Master Method is just a “short cut” for the re-
cursion tree method. It is less powerful than recursion trees.

32

Master Method

—

The recurrence T (n) = aT(n/b) + f(n) can be solved as follows:

o If a f(n/b) < Kf(n) for some constant K < 1, then T(n) =
O(f(n)).

o If a f(n/b) > K f(n) for some constant K > 1, then T'(n) =
@(nlogba)_

e If a f(n/b) = f(n), then T (n) = O(f(n)logyn).

33

Proof —

e If f(n) is a constant factor larger than a f(n/b), then the sum
is a descending geometric series. The sum of any geometric
series is a constant times its largest term. In this case, the
largest term is the first term f(n).

e If f(n) is a constant factor smaller than a f(n/b), then the
sum is an ascending geometric series. The sum of any ge-
ometric series is a constant times its largest term. In this
case, this is the last term, which by our earlier argument is
@(nlogba)_

e Finally, if a f(n/b) = f(n), then each of the L 4+ 1 terms in
the summation is equal to f(n).

34

Example

—

e '(n) =T(3n/4)+n

e If we write this as T'(n) = aT'(n/b) + f(n), then a = 1,b =
4/3,f(n) =n

e Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of
4/3, so0 T'(n) = ©(n)

35

Example

—

e Karatsuba’s multiplication algorithm: T(n) = 3T (n/2) +

n
e If we write this as T'(n) = aT'(n/b) + f(n), then a = 3,b =
2,f(n) =n

e Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of
3/2, so T'(n) = ©(nl°923)

36

o Example

e Mergesort: T'(n) =2T(n/2) +n
e If we write this as T'(n) = aT'(n/b) + f(n), then a = 2,b =

2,f(n) =n
e Here a f(n/b) = f(n), so T'(n) = ©(nlogn)

37

o Example

e I'(n) =T(n/2) +nlogn

e If we write this as T'(n) = aT'(n/b) + f(n), then a = 1,b =
2,f(n) =nlogn

e Here a f(n/b) = n/2logn/2 is smaller than f(n) = nlogn by
a constant factor, so T'(n) = ©(nlogn)

38

o In-Class Exercise —_

e Consider the recurrence: T'(n) = 4T (n/2) + nlgn

e Q: What is f(n) and a f(n/b)?

e Q: Which of the three cases does the recurrence fall under
(when n is large)?

e Q: What is the solution to this recurrence?

39

o In-Class Exercise —_

e Consider the recurrence: T'(n) = 2T (n/4) + nlgn

e Q: What is f(n) and a f(n/b)?

e Q: Which of the three cases does the recurrence fall under
(when n is large)?

e Q: What is the solution to this recurrence?

40

— Take Away ——

e Recursion tree and Master method are good tools for solving
many recurrences

e However these methods are limited (they can’t help us get
guesses for recurrences like f(n) = f(n—1) 4+ f(n —2))

e For info on how to solve these other more difficult recur-
rences, review the notes on annihilators on the class web

page.

41

TodOo ——

e Read Chapter 3 and 4 in the text
e Work on Homework 1

42

