CS 361, Lecture 13

Jared Saia
University of New Mexico

- Appendix C.1 in the book is an excellent reference for background math on counting
- Appendix C.2 is good background for probability

Outline

- Lower Bound for Sorting by Comparison
- Bucket Sort
- Dictionary ADT

How Fast Can We Sort?

- Q: What is a lowerbound on the runtime of any sorting algorithm?
- We know that $\Omega(n)$ is a trivial lowerbound
- But all the algorithms we’ve seen so far are $O(n \log n)$ (or $O(n^2)$), so is $\Omega(n \log n)$ a lowerbound?
Comparison Sorts

- Definition: A sorting algorithm is a comparison sort if the sorted order they determine is based only on comparisons between input elements.
- Heapsort, mergesort, quicksort, bubblesort, and insertion sort are all comparison sorts.
- We will show that any comparison sort must take $\Omega(n \log n)$

Decision Tree Model

- A decision tree is a full binary tree that gives the possible sequences of comparisons made for a particular input array, A.
- Each internal node is labelled with the indices of the two elements to be compared.
- Each leaf node gives a permutation of A.

Comparisons

- Assume we have an input sequence $A = (a_1, a_2, \ldots, a_n)$.
- In a comparison sort, we only perform tests of the form $a_i < a_j$, $a_i \leq a_j$, $a_i = a_j$, $a_i \geq a_j$, or $a_i > a_j$ to determine the relative order of all elements in A.
- We'll assume that all elements are distinct, and so note that the only comparison we need to make is $a_i \leq a_j$.
- This comparison gives us a yes or no answer.

Decision Tree Model

- The execution of the sorting algorithm corresponds to a path from the root node to a leaf node in the tree.
- We take the left child of the node if the comparison is \leq and we take the right child if the comparison is $>$.
- The internal nodes along this path give the comparisons made by the alg, and the leaf node gives the output of the sorting algorithm.
Leaf Nodes

- Any correct sorting algorithm must be able to produce each possible permutation of the input.
- Thus there must be at least \(n! \) leaf nodes.
- The length of the longest path from the root node to a leaf in this tree gives the worst case run time of the algorithm (i.e. the height of the tree gives the worst case runtime).

In-Class Exercise

- Give a decision tree for sorting an array of size three: \(A = (a_1, a_2, a_3) \)
- What is the height? What is the number of leaf nodes?

Example

- Consider the problem of sorting an array of size two: \(A = (a_1, a_2) \)
- Following is a decision tree for this problem.

\[
\begin{array}{ccc}
\text{a1=}=\text{a2?} & \text{yes} & \text{no} \\
(a_1, a_2) & & (a_2, a_1)
\end{array}
\]

Height of Decision Tree

- Q: What is the height of a binary tree with at least \(n! \) leaf nodes?
- A: If \(h \) is the height, we know that \(2^h \geq n! \)
- Taking log of both sides, we get \(h \geq \log(n!) \)
Height of Decision Tree

- Q: What is \(\log(n!) \)?
- A: It is

\[
\log(n \cdot (n-1) \cdots 1) = \log n + \log(n-1) + \cdots + \log 1 \\
\geq (n/2) \log(n/2) \\
\geq (n/2)(\log n - \log 2) \\
= \Omega(n \log n)
\]

- Thus any decision tree for sorting \(n \) elements will have a height of \(\Omega(n \log n) \)

Take Away

- We've just proven that any comparison-based sorting algorithm takes \(\Omega(n \log n) \) time
- This does not mean that all sorting algorithms take \(\Omega(n \log n) \) time
- In fact, there are non-comparison-based sorting algorithms which, under certain circumstances, are asymptotically faster.

Bucket Sort

- Bucket sort assumes that the input is drawn from a uniform distribution over the range \([0,1)\)
- Basic idea is to divide the interval \([0,1)\) into \(n \) equal size regions, or buckets
- We expect that a small number of elements in \(A \) will fall into each bucket
- To get the output, we can sort the numbers in each bucket and just output the sorted buckets in order

```java
//PRE: A is the array to be sorted, all elements in A[i] are between $0$ and $1$ inclusive.
//POST: returns a list which is the elements of A in sorted order
BucketSort(A){
    B = new List[]
    n = length(A)
    for (i=1;i<=n;i++){
        insert A[i] at end of list B[floor(n*A[i])];
    }
    for (i=0;i<=n-1;i++){
        sort list B[i] with insertion sort;
    }
    return the concatenated list B[0],B[1],...,B[n-1];
}
```
Bucket Sort

- Claim: If the input numbers are distributed uniformly over the range \([0, 1]\), then Bucket sort takes expected time \(O(n)\)
- Let \(T(n)\) be the run time of bucket sort on a list of size \(n\)
- Let \(n_i\) be the random variable giving the number of elements in bucket \(B[i]\)
- Then \(T(n) = \Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)\)

Analysis

- We claim that \(E(n_i^2) = 2 - 1/n\)
- To prove this, we define indicator random variables: \(X_{ij} = 1\) if \(A[j]\) falls in bucket \(i\) and \(0\) otherwise (defined for all \(i, 0 \leq i \leq n - 1\) and \(j, 1 \leq j \leq n\))
- Thus, \(n_i = \sum_{j=1}^{n} X_{ij}\)
- We can now compute \(E(n_i^2)\) by expanding the square and regrouping terms

\[
E(n_i^2) = E((\sum_{j=1}^{n} X_{ij})^2)
\]
\[
= E(\sum_{j=1}^{n} \sum_{k=1}^{n} X_{ij} X_{ik})
\]
\[
= E(\sum_{j=1}^{n} X_{ij}^2 + \sum_{1 \leq j \leq n, 1 \leq k \leq n, k \neq j} X_{ij} X_{ik})
\]
\[
= \sum_{j=1}^{n} E(X_{ij}^2) + \sum_{1 \leq j \leq n, 1 \leq k \leq n, k \neq j} E(X_{ij} X_{ik})
\]
Analysis

- We can evaluate the two summations separately. X_{ij} is 1 with probability $1/n$ and 0 otherwise.
- Thus $E(X_{ij}^2) = 1 * (1/n) + 0 * (1 - 1/n) = 1/n$
- Where $k \neq j$, the random variables X_{ij} and X_{ik} are independent.
- For any two independent random variables X and Y, $E(XY) = E(X)E(Y)$ (see C.3 in the book for a proof of this).
- Thus we have that

$$E(X_{ij}X_{ik}) = E(X_{ij})E(X_{ik})$$
$$= (1/n)(1/n)$$
$$= (1/n^2)$$

Dictionary ADT

- Substituting these two expected values back into our main equation, we get:

$$E(n_i^2) = \sum_{j=1}^{n} E(X_{ij}^2) + \sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j} E(X_{ij}X_{ik})$$
$$= \sum_{j=1}^{n} (1/n) + \sum_{1 \leq j \leq n} \sum_{1 \leq k \leq n, k \neq j} (1/n^2)$$
$$= n(1/n) + (n)(n - 1)(1/n^2)$$
$$= 1 + (n - 1)/n$$
$$= 2 - (1/n)$$

- Recall that $E(T(n)) = \Theta(n) + \sum_{i=0}^{n-1} O(E(n_i^2))$
- We can now plug in the equation $E(n_i^2) = 2 - (1/n)$ to get

$$E(T(n)) = \Theta(n) + \sum_{i=0}^{n-1} 2 - (1/n)$$
$$= \Theta(n) + \Theta(n)$$
$$= \Theta(n)$$

- Thus the entire bucket sort algorithm runs in expected linear time.
Dictionary ADT

- Frequently, we think of the items being stored in the dictionary as keys
- The keys typically have records associated with them which are carried around with the key but not used by the ADT implementation
- Thus we can implement functions like:
 - Insert(k,r): puts the item (k,r) into the dictionary if the key k is not already there, otherwise returns an error
 - Delete(k): deletes the item with key k from the dictionary
 - Lookup(k): returns the item (k,r) if k is in the dictionary, otherwise returns null

Implementing Dictionaries

- The simplest way to implement a dictionary ADT is with a linked list
- Let l be a linked list data structure, assume we have the following operations defined for l
 - head(l): returns a pointer to the head of the list
 - next(p): given a pointer p into the list, returns a pointer to the next element in the list if such exists, null otherwise
 - previous(p): given a pointer p into the list, returns a pointer to the previous element in the list if such exists, null otherwise
 - key(p): given a pointer into the list, returns the key value of that item
 - record(p): given a pointer into the list, returns the record value of that item

In-Class Exercise

Implement a dictionary with a linked list

- Q1: Write the operation Lookup(k) which returns a pointer to the item with key k if it is in the dictionary or null otherwise
- Q2: Write the operation Insert(k,r)
- Q3: Write the operation Delete(k)
- Q4: For a dictionary with n elements, what is the runtime of all of these operations for the linked list data structure?
- Q5: Describe how you would use this dictionary ADT to count the number of occurrences of each word in an online book.

Dictionaries

- This linked list implementation of dictionaries is very slow
- Q: Can we do better?
- A: Yes, with hash tables, AVL trees, etc
Hash Tables implement the Dictionary ADT, namely:

- Insert(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Lookup(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Delete(x) - $O(1)$ expected time, $\Theta(n)$ worst case

Each of these operations takes $O(1)$ time.

Suppose universe of keys is $U = \{0, 1, \ldots, m - 1\}$, where m is not too large
- Assume no two elements have the same key
- We use an array $T[0..m-1]$ to store the keys
- Slot k contains the elem with key k

If universe U is large, storing the array T may be impractical
- Also much space can be wasted in T if number of objects stored is small
- Q: Can we do better?
- A: Yes we can trade time for space