Hash Tables implement the Dictionary ADT, namely:

- Insert(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Lookup(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Delete(x) - $O(1)$ expected time, $\Theta(n)$ worst case

Direct Addressing

- Suppose universe of keys is $U = \{0, 1, \ldots, m-1\}$, where m is not too large
- Assume no two elements have the same key
- We use an array $T[0..m-1]$ to store the keys
- Slot k contains the elem with key k

Direct Address Functions

Da-Search(T,k){ return T[k];}
Da-Insert(T,x){ T[key(x)] = x;}
Da-Delete(T,x){ T[key(x)] = NIL;}

Each of these operations takes $O(1)$ time
Direct Addressing Problem

- If universe U is large, storing the array T may be impractical
- Also much space can be wasted in T if number of objects stored is small
- Q: Can we do better?
- A: Yes we can trade time for space

Chained Hash

In chaining, all elements that hash to the same slot are put in a linked list.

CH-Insert(T, x){Insert x at the head of list $T[h(key(x))]$;}
CH-Search(T, k){search for elem with key k in list $T[h(k)]$;}
CH-Delete(T, x){delete x from the list $T[h(key(x))]$;}

Hash Tables

- “Key” Idea: An element with key k is stored in slot $h(k)$, where h is a hash function mapping U into the set $\{0, \ldots, m-1\}$
- Main problem: Two keys can now hash to the same slot
- Q: How do we resolve this problem?
- A1: Try to prevent it by hashing keys to “random” slots and making the table large enough
- A2: Chaining
- A3: Open Addressing

Analysis

- CH-Insert and CH-Delete take $O(1)$ time if the list is doubly linked and there are no duplicate keys
- Q: How long does CH-Search take?
- A: It depends. In particular, depends on the load factor, $\alpha = n/m$ (i.e., average number of elems in a list)
CH-Search Analysis

- Worst case analysis: everyone hashes to one slot so $\Theta(n)$
- For average case, make the simple uniform hashing assumption: any given elem is equally likely to hash into any of the m slots, indep. of the other elems
- Let n_i be a random variable giving the length of the list at the i-th slot
- Then time to do a search for key k is $1 + n_{h(k)}$

Hash Functions

- Want each key to be equally likely to hash to any of the m slots, independently of the other keys
- Key idea is to use the hash function to “break up” any patterns that might exist in the data
- We will always assume a key is a natural number (can e.g. easily convert strings to naturally numbers)

CH-Search Analysis

- Q: What is $E(n_{h(k)})$?
- A: We know that $h(k)$ is uniformly distributed among $\{0, .., m-1\}$
- Thus, $E(n_{h(k)}) = \sum_{i=0}^{m-1} (1/m)n_i = n/m = \alpha$

Division Method

- $h(k) = k \mod m$
- Want m to be a prime number
- Why?
Multiplication Method

- \(h(k) = \lfloor m \times (kA \mod 1) \rfloor \)
- \(kA \mod 1 \) means the fractional part of \(kA \)
- Advantage: value of \(m \) is not critical, need not be a prime
- \(A = (\sqrt{5} - 1)/2 \) works well in practice

Open Addressing

- In general, for open addressing, the hash function depends on both the key to be inserted and the probe number
- Thus for a key \(k \), we get the probe sequence \(h(k, 0), h(k, 1), \ldots, h(k, m - 1) \)

Open Addressing

- All elements are stored in the hash table itself, there are no separate linked lists
- When we do a search, we probe the hash table until we find an empty slot
- Sequence of probes depends on the key
- Thus hash function maps from a key to a "probe sequence" (i.e. a permutation of the numbers 0,..,\(m - 1 \))
- If we use open addressing, the hash table can never fill up i.e. the load factor \(\alpha \) can never exceed 1
- An advantage of open addressing is that it avoids pointers and the overhead of storing lists in each slot of the table
- This freed up memory can be used to create more slots in the table which can reduce the load-factor and potentially speed up retrieval time
- A disadvantage is that deletion is difficult. If deletions occur in the hash table, chaining is usually used
OA-Insert

```
OA-Insert(T,k){
    i = 0;
    repeat {
        j = h(k,i);
        if (T[j] = nil){
            T[j] = k;
            return j;
        }
        else i++;
    } until (i=m);
}
```

OA-Delete

- Deletion from an open-address hash table is difficult
- When we delete a key from slot i, we can't just mark that slot as empty by storing nil there
- The problem is that this would make it impossible to find some key k during whose insertion we probed slot i and found it occupied

OA-Search

```
OA-Insert(T,k){
    i = 0;
    repeat {
        j = h(k,i);
        if (T[j] = k){
            return j;
        }
        else i++;
    } until (T[j]=nil or i=m);
}
```

OA-Delete

- One solution is to mark the slot by storing in it the value "DELETED"
- Then we modify OA-Insert to treat such a slot as if it were empty so that something can be stored in it
- OA-Search passes over these special slots while searching
- Note that if we use this trick, search times are no longer dependent on the load-factor α (for this reason, chaining is more commonly used when keys must be deleted)
Implementation

- To analyze open-address hashing, we make the assumption of uniform hashing: we assume that each key is equally likely to have any of the \(m! \) permutations of \(\{0, 1, \ldots, m - 1\} \) as its probe sequence.
- True uniform hashing is difficult to implement, so in practice, we generally use one of three approximations on the next slide.

Analysis

- Recall that the load factor, \(\alpha \), is the number of elements stored in the hash table, \(n \), divided by the total number of slots \(m \).
- In open-address hashing, we have at most one element per slot so \(\alpha < 1 \).
- We assume uniform hashing i.e., each probe maps to essentially a random slot in the table.
- We can show that the expected time for insertions is at most \(1/(1 - \alpha) \), the expected time for an unsuccessful search is \(1/(1 - \alpha) \) and the expected time for a successful search is \((1/\alpha) \ln[1/(1 - \alpha)] \).

Implementations

- All positions are taken modulo \(m \), and \(i \) ranges from 1 to \(m - 1 \).
 - **Linear Probing:** Initial probe is to position \(h(k) \), successive probes are to positions \(h(k) + i \).
 - **Quadratic Probing:** Initial probe is to position \(h(k) \), successive probes are to position \(h(k) + c_1i + c_2i^2 \).
 - **Double Hashing:** Initial probe is to position \(h(k) \), successive probes are to positions \(h(k) + ih_2(k) \).

Hash Tables Wrapup

- Hash Tables implement the Dictionary ADT, namely:
 - **Insert(x)** - \(O(1) \) expected time, \(\Theta(n) \) worst case
 - **Lookup(x)** - \(O(1) \) expected time, \(\Theta(n) \) worst case
 - **Delete(x)** - \(O(1) \) expected time, \(\Theta(n) \) worst case
Binary Search Trees

- Binary Search Trees are another data structure for implementing the dictionary ADT

Why BST?

- Q: When would you use a Search Tree?
- A1: When need a hard guarantee on the worst case run times (e.g. “mission critical” code)
- A2: When want something more dynamic than a hash table (e.g. don’t want to have to enlarge a hash table when the load factor gets too large)
- A3: Search trees can implement some other important operations...

Red-Black Trees

Red-Black trees (a kind of binary tree) also implement the Dictionary ADT, namely:

- Insert(x) - $O(\log n)$ time
- Lookup(x) - $O(\log n)$ time
- Delete(x) - $O(\log n)$ time

Search Tree Operations

- Insert
- Lookup
- Delete
- Minimum/Maximum
- Predecessor/Successor
What is a BST?

- It's a binary tree
- Each node holds a key and record field, and a pointer to left and right children
- Binary Search Tree Property is maintained

Example BST

Binary Search Tree Property

- Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $\text{key}(y) < \text{key}(x)$. If y is a node in the right subtree of x then $\text{key}(x) \leq \text{key}(y)$

Inorder Walk

- BSTs are arranged in such a way that we can print out the elements in sorted order in $\Theta(n)$ time
- Inorder Tree Walk does this
Inorder Tree-Walk

Inorder-TW(x)
 if (x is not nil)
 Inorder-TW(left(x));
 print key(x);
 Inorder-TW(right(x));
 }