B-Trees

- B-Trees are balanced search trees designed to work well on disks
- B-Trees are *not* binary trees: each node can have many children
- Each node of a B-Tree contains *several* keys, not just one
- When doing searches, we decide which child link to follow by finding the correct interval of our search key in the key set of the current node.

Outline

- B-Trees
- Skip Lists

Disk Accesses

- Consider any search tree
- The number of disk accesses per search will dominate the run time
- Unless the entire tree is in memory, there will usually be a disk access every time an arbitrary node is examined
- The number of disk accesses for most operations on a B-tree is proportional to the height of the B-tree
- I.e. The info on each node of a B-tree can be stored in main memory
B-Tree Properties

The following is true for every node \(x \):

- \(x \) stores keys, \(\text{key}_1(x), \ldots, \text{key}_l(x) \) in sorted order (nondecreasing).
- \(x \) contains pointers, \(c_1(x), \ldots, c_{i+1}(x) \) to its children.
- Let \(k_i \) be any key stored in the subtree rooted at the \(i \)-th child of \(x \), then \(k_1 \leq \text{key}_1(x) \leq k_2 \leq \text{key}_2(x) \cdots \leq \text{key}_l(x) \leq k_{i+1} \).

Note

- The above properties imply that the height of a B-tree is no more than \(\log_t \frac{n+1}{2} \), for \(t \geq 2 \), where \(n \) is the number of keys.
- If we make \(t \), larger, we can save a larger (constant) fraction over RB-trees in the number of nodes examined.
- A \((2-3-4)\)-tree is just a B-tree with \(t = 2 \).

Example B-Tree

- All leaves have the same depth.
- Lower and upper bounds on the number of keys a node can contain, given as a function of a fixed integer \(t \):
 - Every node other than the root must have \(\geq (t - 1) \) keys, and \(t \) children. If the tree is non-empty, the root must have at least one key (and 2 children).
 - Every node can contain at most \(2t - 1 \) keys, so any internal node can have at most \(2t \) children.
We will now show that for any B-Tree with height h and n keys, $h \leq \log_t \frac{n+1}{2}$, where $t \geq 2$.

Consider a B-Tree of height $h > 1$

- **Q1:** What is the minimum number of nodes at depth 1, 2, and 3?
- **Q2:** What is the minimum number of nodes at depth i?
- **Q3:** Now give a lowerbound for the total number of keys (e.g. $n \geq ???$)
- **Q4:** Show how to solve for h in this inequality to get an upperbound on h

Splay Trees

- A Splay Tree is a kind of BST where the standard operations run in $O(\log n)$ amortized time
- This means that over l operations (e.g. Insert, Lookup, Delete, etc), the total cost is $O(l \log n)$
- In other words, the average cost per operation is $O(\log n)$
- However a single operation could still take $O(n)$ time
- In practice, they are very fast

Skip Lists

- Technically, not a BST, but they implement all of the same operations
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time

High Level Analysis

Comparison of various BSTs

- RB-Trees: + guarantee $O(\log n)$ time for each operation, easy to augment, − high constants
- AVL-Trees: + guarantee $O(\log n)$ time for each operation, − high constants
- B-Trees: + works well for trees that won’t fit in memory, − inserts and deletes are more complicated
- Splay Trees: + small constants, − amortized guarantees only
- Skip Lists: + easy to implement, − runtime guarantees are probabilistic only
Which Data Structure to use?

- Splay trees work very well in practice, the “hidden constants” are small
- Unfortunately, they can not guarantee that every operation takes $O(\log n)$
- When this guarantee is required, B-Trees are best when the entire tree will not be stored in memory
- If the entire tree will be stored in memory, RB-Trees, AVL-Trees, and Skip Lists are good

Skip List

- A skip list is basically a collection of doubly-linked lists, L_1, L_2, \ldots, L_x, for some integer x
- Each list has a special head and tail node, the keys of these nodes are assumed to be $-\text{MAXINT}$ and $+\text{MAXINT}$ respectively
- The keys in each list are in sorted order (non-decreasing)

- Every node is stored in the bottom list
- For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
- The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists
- Each node v stores a search key (key(v)), a pointer to its next lower copy (down(v)), and a pointer to the next node in its level (right(v)).

Skip List

- Technically, not a BST, but they implement all of the same operations
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time
To do a search for a key, \(x \), we start at the leftmost node \(L \) in the highest level.

- We then scan through each level as far as we can without passing the target value \(x \) and then proceed down to the next level.
- The search ends either when we find the key \(x \) or fail to find \(x \) on the lowest level.

```c
SkipListFind(x, L){
    v = L;
    while (v != NULL) and (Key(v) != x){
        if (Key(Right(v)) > x)
            v = Down(v);
        else
            v = Right(v);
    }
    return v;
}
```
Insert

p is a constant between 0 and 1, typically $p = 1/2$, let $\text{rand}()$ return a random value between 0 and 1

```plaintext
Insert(k){
First call Search(k), let pLeft be the leftmost elem <= k in L_1
Insert k in L_1, to the right of pLeft
i = 2;
while (rand()<= p){
   insert k in the appropriate place in L_i;
}
}
```

Deletion

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to “zip up” the lists after the deletion

Analysis

- Intuitively, each level of the skip list has about half the number of nodes of the previous level, so we expect the total number of levels to be about $O(\log n)$
- Similarly, each time we add another level, we cut the search time in half except for a constant overhead
- So after $O(\log n)$ levels, we would expect a search time of $O(\log n)$
- We will now formalize these two intuitive observations

Height of Skip List

- For some key, i, let X_i be the maximum height of i in the skip list.
- Q: What is the probability that $X_i \geq 2 \log n$?
- A: If $p = 1/2$, we have:

\[
P(X_i \geq 2 \log n) = \left(\frac{1}{2}\right)^{2\log n} = \frac{1}{(2\log n)^2} = \frac{1}{n^2}
\]

- Thus the probability that a particular key i achieves height $2 \log n$ is $\frac{1}{n^2}$
Height of Skip List

- Q: What is the probability that any key achieves height $2\log n$?
- A: We want $P(X_1 \geq 2 \log n \text{ or } X_2 \geq 2 \log n \text{ or } \ldots \text{ or } X_n \geq 2 \log n)$
- By a Union Bound, this probability is no more than $P(X_1 \geq k \log n) + P(X_2 \geq k \log n) + \ldots + P(X_n \geq k \log n)$
- Which equals:
 $$\sum_{i=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = \frac{1}{n}$$

Expected Space

A trick for computing expectations of discrete positive random variables:
- Let X be a discrete r.v., that takes on values from 1 to n
 $$E(X) = \sum_{i=1}^{n} P(X \geq i)$$
- Why???

In-Class Exercise

Q: How much memory do we expect a skip list to use up?
- Let X_i be the number of lists elem i is inserted in
- Q: What is $P(X_i \geq 1)$, $P(X_i \geq 2)$, $P(X_i \geq 3)$?
- Q: What is $P(X_i \geq k)$ for general k?
- Q: What is $E(X_i)$?
- Q: Let $X = \sum_{i=1}^{n} X_i$. What is $E(X)$?

Key Point: The height of a skip list is $O(\log n)$ with high probability.
Search Time

- It's easier to analyze the search time if we imagine running the search backwards.
- Imagine that we start at the found node \(v \) in the bottommost list and we trace the path backwards to the top leftmost sentinel, \(L \).
- This will give us the length of the search path from \(L \) to \(v \) which is the time required to do the search.

Backwards Search

```c
SLFback(v){
    while (v != L){
        if (Up(v)!=NIL)
            v = Up(v);
        else
            v = Left(v);
    }
}
```

Backward Search

- For every node \(v \) in the skip list \(\text{Up}(v) \) exists with probability \(1/2 \). So for purposes of analysis, \(\text{SLFBack} \) is the same as the following algorithm:

```c
FlipWalk(v){
    while (v != L){
        if (COINFLIP == HEADS)
            v = Up(v);
        else
            v = Left(v);
    }
}
```

Analysis

- For this algorithm, the expected number of heads is exactly the same as the expected number of tails.
- Thus the expected run time of the algorithm is twice the expected number of upward jumps.
- Since we already know that the number of upward jumps is \(O(\log n) \) with high probability, we can conclude that the expected search time is \(O(\log n) \).