
CS 361, Lecture 5

Jared Saia

University of New Mexico

Today’s Outline

• Review of Asymptotic Notation

• Proofs of correctness

• Intro to Recurrence Relations

1

Asymptotic Rule of Thumb

• Let f(n), g(n) be two functions of n

• Let f1(n), be the fastest growing term of f(n), stripped of

its coefficient.

• Let g1(n), be the fastest growing term of g(n), stripped of

its coefficient.

Then we can say:

• If f1(n) ≥ g1(n) then f(n) = O(g(n))

• If f1(n) ≤ g1(n) then f(n) = Ω(g(n))

• If f1(n) = g1(n) then f(n) = Θ(g(n))

• If f1(n) < g1(n) then f(n) = o(g(n))

• If f1(n) > g1(n) then f(n) = ω(g(n))

2

Examples

The following are all true statements:

• From last lecture,
∑n
i=1 i

2 is O(n3), Ω(n3) and Θ(n3)

• logn is o(
√
n)

• logn is o(log2 n)

• 10,000n2 + 25n is Θ(n2)

3

Proofs of Correctness

• Last time, we saw how to use a loop invariant to prove the

correctness of an alg to find the middle element in a list

• Today we’ll look at proof of correctness for Insertion Sort

• We’ll also look at a more complicated proof for a MaxSeq

algorithm

4

Loop Invariants

A useful tool for proofs of correctness is loop invariants. Three

things must be shown about a loop invariant

• Initialization: Invariant is true before first iteration of loop

• Maintenance: If invariant is true before iteration i, it is also

true before iteration i+ 1 (for any i)

• Termination: When the loop terminates, the invariant gives

a property which can be used to show the algorithm is correct

5



Example Loop Invariant

• We’ll prove the correctness of a simple algorithm which solves

the following interview question:

• Find the middle of a linked list, while only going through the

list once

• The basic idea is to keep two pointers into the list, one of

the pointers moves twice as fast as the other

• (Call the head of the list the 0-th elem, and the tail of the list

the (n−1)-st element, assume that n−1 is an even number)

6

Example Algorithm

GetMiddle (List l){

pSlow = pFast = l;

while ((pFast->next)&&(pFast->next->next)){

pFast = pFast->next->next

pSlow = pSlow->next

}

return pSlow

}

7

Example Loop Invariant

• Invariant: At the start of the i-th iteration of the while loop,

pSlow points to the i-th element in the list and pFast points

to the 2i-th element

• Initialization: True when i = 0 since both pointers are at

the head

• Maintenance: if pSlow, pFast are at positions i and 2i re-

spectively before i-th iteration, they will be at positions i+1,

2(i+ 1) respectively before the i+ 1-st iteration

• Termination: When the loop terminates, pFast is at ele-

ment n− 1. Then by the loop invariant, pSlow is at element

(n− 1)/2. Thus pSlow points to the middle of the list

8

Another example

• The Problem: we want to sort an array, A, of integers in

non-decreasing order

• E.g. if A is 3,2,2,1,5 at the start, we want it to be 1,2,2,3,5

at the end

• Insertion-sort is one way to do this

9

Insertion Sort

Insertion-Sort (A, int n)

for (j=1;j<n;j++){

key = A[j];

//Insert A[j] into the sorted sequence A[0,...,j-1],

//in the location such that it is as large as all elems

// to the left of it

i = j-1

while (i>=0 and A[i] > key){

A[i+1] = A[i]

i--

}

A[i+1] = key

}

10

Run Time of Insertion-Sort

• We can easily calculate the worst case run time of insertion

sort

• The outer “for” loop runs from j = 1 to j = n − 1, in the

worst case, the inner “while” loop runs from i = j − 1 to 0

• This gives us the following sum:

n∑

j=1

0∑

i=j−1

1 =
n∑

j=1

j (1)

= (n+ 1)n/2 (2)

= O(n2) (3)

(4)

11



Loop Invariant

• Insertion sort has a more complicated loop invariant:

• Invariant: At the start of each iteration of the for loop, the

array A[0, . . . , j − 1] consists of the elements of the original

A[0, . . . , j − 1], except that they are in sorted order

• How do we use this loop invariant to prove correctness?

12

In Class Exercise

• Invariant: At the start of each iteration of the for loop, the

array A[0, . . . , j − 1] consists of the elements of the original

A[0, . . . , j − 1], except that they are in sorted order

• Establish the following properties for this invariant:

– Initialization: Establish at time just after first assignment

to j (i.e. for j = 1, but before the loop has been entered)

– Maintenance: Assuming the inner loop does what the

comment says, show maintenance for the outer loop in-

variant

– Termination: Show that A is sorted at termination

13

Another Example

• Proofs of correctness are not always easy

• Question from before: Design an algorithm to return the

largest sum of contiguous integers in an array of ints

• Example: if the input is (−10,2,3,−2,0,5,−15), the largest

sum is 8, which we get from (2,3,−2,0,5).

14

Our Last Algorithm

MaxSeq2 (int arr[], int n)

int max = 0;

for (int i = 1;i<=n;i++)

int sum = 0;

for (int j=i;j<=n;j++)

sum += arr[j];

if (sum > max)

max = sum; //and store i and j if desired

return max;

takes O(n2) time.

15

A New Algorithm

MaxSeq3 (int arr[], int n){

int arrLeft[] = new int[n];

arrLeft[0] = arr[0];

for (int i=1;i<n;i++){

arrLeft[i] = max (arr[i], arrLeft[i-1] + arr[i]);

}

int arrRight[] = new int[n];

arrRight[n-1] = arr[n-1];

for (int i=n-2;i>=0;i--){

arrRight[i] = max (arr[i], arrRight[i+1] + arr[i]);

}

;;now compute the maximum subsequence using

;;arrLeft and arrRight

16

int arrMax[] = new int[n];

arrMax[0] = arrRight[0];

arrMax[n-1] = arrLeft[n-1];

for (int i=1;i<n-1;i++){

int sum = arrLeft[i] + arrRight[i] - arr[i];

arrMax[i] = sum;

}

return the maximum element in the array arrMax or 0,

whichever is larger;

}



Example

arr -10 2 3 -2 0 5 -15
arrLeft -10 2 5 3 3 8 -7

arrRight -2 8 6 3 5 5 -15
arrMax -2 8 8 8 8 8 -7

17

MaxSeq3

• What is the run time of this algorithm?

• Is it correct?

18

Loop1 Invariant

• Loop 1 Invariant: At the start of the i-th iteration, for all
j < i, arrLeft[j] gives the largest value of any subsequence
whose rightmost term is arr[j].
• Initialization: When i = 1, arrLeft[0] = arr[0], which is the

largest value of any subsequence whose rightmost term is
arr[0].
• Maintenance: Assume the invariant is true before iteration
i. This means arrLeft[i-1] gives the value of the largest sub-
sequence whose rightmost term is arrLeft[i-1].
Note that at the end of the iteration, arrLeft[i] = max (arr[i],
arrLeft[i-1] + arr[i]). Further note that there exists a subse-
quence, li∗ which terminates at arr[i] and obtains this value.
It’s either the subsequence consisting of just arr[i], or the
subsequence with term arr[i] concatenated with the subse-
quence associated with the value arrLeft[i-1].
Now consider some arbitrary subsequence, li which has right-
most term arr[i]. Let v(li) be the value of this subsequence.

19

To show arrLeft[i] is indeed the maximal value, we need only

show that that v(li) ≤ arrLeft[i]. There are two cases.

Case 1 is that li includes only the term arr[i]. In this case,

v(li) ≤ arr[i] ≤ arrLeft[i].

Case 2 is that li extends left beyond arr[i]. Let li−1 be the

part of li that does not contain arr[i]. Then v(li) = v(li−1)+

arr[i]. But v(li−1) ≤ arrLeft[i-1], by the inductive hypothesis.

Thus v(li) ≤ v arrLeft[i-1] + arr[i] ≤ arrLeft[i].

Hence the value arrLeft[i] does in fact give the largest value

of any subsequence whose rightmost term is arr[i], so by the

inductive hypothesis, the loop invariant holds after iteration

i.

• Termination: When the loop terminates, for all values of

0 ≤ j < n, arrLeft[j] gives the largest value of any subse-

quence whose rightmost term is arr[j].

Loop2 Invariant

• Loop 2 Invariant: At the start of the i-th iteration, arrRight[j]

gives the value of the largest subsequence ending at position

j, for all j < i.

• Initialization, Maintenance, and Termination proofs are

similar to Loop 1 invariant

• Good at home exercise to see if you can prove these facts

for loop2

20

Loop3 Invariant

• Loop 3 Invariant: At the start of the i-th iteration, for all

j < i, arrMax[j] gives the value of the best subsequence which

includes value arr[j].

• We can assume the termination conditions of the loop1 and

loop2 invariants hold during loop3.

• Initialization: When i = 1, arrMax[0] = arrRight[0]. We’ve

shown that arrRight[0] is the best value of any subsequence

whose leftmost value is arr[0]. Any subsequence contain-

ing arr[0] will have arr[0] as the leftmost element. Hence

arrMax[0] is in fact the value of the best subsequence con-

taining arr[0].

• Maintenance: Assume the invariant is true before iteration

i. Note that at the end of the iteration, arrMax[i] = arrLeft[i]

+ arrRight[i] - arr[i].

We first note that there exists a subsequence si∗ which achieves

this value arrMax[i]. It’s just the subsequence consisting

21



of the subsequence which achieves the value arrLeft[i] con-

catenated with the subsequence which achieves the value

arrRight[i].

Now consider some arbitrary subsequence, si, which contains

arr[i]. To show arrMax[i] is indeed the maximal value, we

need only show that v(si) ≤ arrMax[i]. Let li be the subse-

quence of si which includes arr[i] and all elems to the left of

arr[i]. Similarly, let ri be the subsequence of si which includes

arr[i] and all elems to the right of arr[i]. Note that

– v(li) ≤ arrLeft[i]

– v(ri) ≤ arrRight[i]

Hence v(si) = v(li) + v(ri)− arr[i] ≤ arrLeft[i] + arrRight[i]

-arr[i] = arrMax[i]. And so arrMax[i] does in fact give the

value of the best subsequence which includes value arr[i].

Thus, the loop invariant remains true at the beginning of

iteration i+ 1.

• Termination: When the loop terminates, for all 1 < j <

n−1, arrMax[j] gives the value of the best subsequence which

includes value arr[j]. We further note that arrMax[n-1] gives

the value of the best subsequence containing arr[n-1], since

arrMax[n-1] = arrLeft[n-1], and any subsequence containing

arr[n-1] will have arr[n-1] as the rightmost element.

The best subsequence in the array arr must contain some

element in the array or be the empty subsequence. If it’s not

the empty subsequence, the value of it is stored somewhere

in arrMax. Thus the return value of MaxSeq3 is the value of

the best possible subsequence.

Take away

• We needed 3 loop invariants for MaxSeq3

• MaxSeq3 was much harder to show correct, but it runs much

faster than our other algorithms

• I don’t expect you to be able to do proofs like the one for

MaxSeq3, especially not from scratch

• However, you should be able to understand it!

• I do expect you to be able to do proofs of correctness like

those for GetMiddle and Insertion-Sort.

22

Todo

• Read Chapter 4 (Recurrences) in text

23


