
CS 361, Lecture 15

Jared Saia

University of New Mexico

Outline

• Dictionary ADT

• Hash Tables

1

Dictionary ADT

A dictionary ADT implements the following operations

• Insert(x): puts the item x into the dictionary

• Delete(x): deletes the item x from the dictionary

• IsIn(x): returns true iff the item x is in the dictionary

2

Dictionary ADT

• Frequently, we think of the items being stored in the dictio-

nary as keys

• The keys typically have records associated with them which

are carried around with the key but not used by the ADT

implementation

• Thus we can implement functions like:

– Insert(k,r): puts the item (k,r) into the dictionary if the

key k is not already there, otherwise returns an error

– Delete(k): deletes the item with key k from the dictionary

– Lookup(k): returns the item (k,r) if k is in the dictionary,

otherwise returns null

3



Implementing Dictionaries

• The simplest way to implement a dictionary ADT is with a

linked list

• Let l be a linked list data structure, assume we have the

following operations defined for l

– head(l): returns a pointer to the head of the list

– next(p): given a pointer p into the list, returns a pointer

to the next element in the list if such exists, null otherwise

– previous(p): given a pointer p into the list, returns a

pointer to the previous element in the list if such exists,

null otherwise

– key(p): given a pointer into the list, returns the key value

of that item

– record(p): given a pointer into the list, returns the record

value of that item

4

In-Class Exercise

Implement a dictionary with a linked list

• Q1: Write the operation Lookup(k) which returns a pointer

to the item with key k if it is in the dictionary or null otherwise

• Q2: Write the operation Insert(k,r)

• Q3: Write the operation Delete(k)

• Q4: For a dictionary with n elements, what is the runtime

of all of these operations for the linked list data structure?

5

In-Class Exercise

• Q5: Describe how you would use this dictionary ADT to

count the number of occurences of each word in an online

book.

• Q6: If m is the total number of words in the online book,

and n is the number of unique words, what is the runtime of

the algorithm for the previous question?

6

Dictionaries

• This linked list implementation of dictionaries is very slow

• Q: Can we do better?

• A: Yes, with hash tables, AVL trees, etc

7



Hash Tables

Hash Tables implement the Dictionary ADT, namely:

• Insert(x) - O(1) expected time, Θ(n) worst case

• Lookup(x) - O(1) expected time, Θ(n) worst case

• Delete(x) - O(1) expected time, Θ(n) worst case

8

Direct Addressing

• Suppose universe of keys is U = {0,1, . . . ,m− 1}, where m is

not too large

• Assume no two elements have the same key

• We use an array T [0..m− 1] to store the keys

• Slot k contains the elem with key k

9

Direct Address Functions

DA-Search(T,k){ return T[k];}

DA-Insert(T,x){ T[key(x)] = x;}

DA-Delete(T,x){ T[key(x)] = NIL;}

Each of these operations takes O(1) time

10

Direct Addressing Problem

• If universe U is large, storing the array T may be impractical

• Also much space can be wasted in T if number of objects

stored is small

• Q: Can we do better?

• A: Yes we can trade time for space

11



Hash Tables

• “Key” Idea: An element with key k is stored in slot h(k),

where h is a hash function mapping U into the set {0, . . . ,m−
1}
• Main problem: Two keys can now hash to the same slot

• Q: How do we resolve this problem?

• A1: Try to prevent it by hashing keys to “random” slots and

making the table large enough

• A2: Chaining

• A3: Open Addressing

12

Chained Hash

In chaining, all elements that hash to the same slot are put in a

linked list.

CH-Insert(T,x){Insert x at the head of list T[h(key(x))];}

CH-Search(T,k){search for elem with key k in list T[h(k)];}

CH-Delete(T,x){delete x from the list T[h(key(x))];}

13

Analysis

• CH-Insert and CH-Delete take O(1) time if the list is doubly

linked and there are no duplicate keys

• Q: How long does CH-Search take?

• A: It depends. In particular, depends on the load factor,

α = n/m (i.e. average number of elems in a list)

14

CH-Search Analysis

• Worst case analysis: everyone hashes to one slot so Θ(n)

• For average case, make the simple uniform hashing assump-

tion: any given elem is equally likely to hash into any of the

m slots, indep. of the other elems

• Let ni be a random variable giving the length of the list at

the i-th slot

• Then time to do a search for key k is 1 + nh(k)

15



CH-Search Analysis

• Q: What is E(nh(k))?

• A: We know that h(k) is uniformly distributed among {0, ..,m−
1}
• Thus, E(nh(k)) =

∑m−1
i=0 (1/m)ni = n/m = α

16

Hash Functions

• Want each key to be equally likely to hash to any of the m

slots, independently of the other keys

• Key idea is to use the hash function to “break up” any pat-

terns that might exist in the data

• We will always assume a key is a natural number (can e.g.

easily convert strings to naturaly numbers)

17

Division Method

• h(k) = k mod m

• Want m to be a prime number, which is not too close to a

power of 2

• Why?

18

Multiplication Method

• h(k) = bm ∗ (kA mod 1)c
• kA mod 1 means the fractional part of kA

• Advantage: value of m is not critical, need not be a prime

• A = (
√

5− 1)/2 works well in practice

19



Open Addressing

• All elements are stored in the hash table, there are no sepa-

rate linked lists

• When we do a search, we probe the hash table until we find

an empty slot

• Sequence of probes depends on the key

• Thus hash function maps from a key to a “probe sequence”

(i.e. a permutation of the numbers 0, ..,m− 1)

20

Open Addressing

All positions are taken modulo m, and i ranges from 1 to m− 1

• Linear Probing: Initial probe is to position h(k), successive

probes are to positions h(k) + i,

• Quadratic Probing: Initial probes is to position h(k), succes-

sive probes are to position h(k) + c1i+ c2i
2

• Double Hashing: Initial probe is to position h(k), successive

probes are to positions h(k) + ih2(k)

21


