
CS 361, Lecture 2

Jared Saia

University of New Mexico

Today’s Outline

• Asymptotic Analysis

1

Questions from last time

Express the following in O notation

• n3/1000− 100n2 − 100n+ 3

• logn+ 100

• 10 ∗ log2 n+ 100

• ∑n
i=1 i

2

Computing big-O of an Algorithm

• Write down a formula, f(n), which gives the number of ele-

mentary operations performed by the algorithm as a function

of the input size, n

• Compute the big-O value for f(n)

3



An Example

Consider the following (silly) algorithm:

Alg 1 (int n)

For i=1 to n

For j=1 to i

print "hi"

4

An Example (II)

• First we write down the formula f giving the number of basic

operations the algorithm performs: f =
∑n
i=1 i = (n+ 1)n/2

• Next we compute the big-O value for f : (n+ 1)n/2 is O(n2)

We can then say that Alg1 takes O(n2) time. Or, for short, we

just say Alg1 is O(n2)

5

Examples from last class

Following are some formulas that represent the number of oper-

ations of some algorithm. Give the big-O notation for each.

• E.g. n, 10,000n− 2000, and .5n+ 2 are all O(n)

• n+ logn, n−√n are O(n)

• n2 + n+ logn, 10n2 + n−√n are O(n2)

• n logn+ 10n is O(n logn)

• 10 ∗ log2 n is O(log2 n)

• n√n+ n logn+ 10n is O(n
√
n)

• 10,000, 250 and 4 are O(1)

6

Computing big-O of an Algorithm

Following is a shorter way to compute big-O for an algorithm:
“Atomic operations” Constant time
Consecutive statements Sum of times
Conditionals Larger branch time plus test time
Loops Sum of iterations
Function Calls Time of function body
Recursive Functions Solve Recurrence Relation

7



Alg: Linear Search

bool LinearSearch (int arr[], int n, int key){

for (int i=0;i<n;i++){

if (arr[i]==key)

return true;

}

return false;

}

8

Alg: Binary Search

bool BinarySearch (int arr[], int s, int e, int key){

if (e-s<=0) return false;

int mid = (e-s)/2;

if (arr[key]==arr[mid]){

return true;

}else if (key < arr[mid]){

return BinarySearch (arr,s,mid,key);}

else{

return BinarySearch (arr,mid,e,key)}

}

9

Linear Search Analysis

• To analyze the linear search algorithm, we consider the worst

case

• The worst case occurs when the key is the very last element

in the array

• In this case, the algorithm takes O(n) time

• Thus we say that the run time of Linear Search is O(n)

• (Note that the average time of Linear Search is also O(n))

10

Binary Search Analysis

• Note that even in the worst case, the size of the array we

search is being split in half in each call

• Thus if x is the number of recursive calls, and n is the original

size of the array, n(1/2)x = 1 in the worst case

• This implies that 2x = n

• Taking log of both sides, we get x = logn, which means that

there are logn recursive calls in the worst case

• Since each invocation of the function takes O(1) time (minus

the recursive calls), and the total number of invocations is

at most logn, the running time is O(logn)

11



Comparison

• Linear Search is O(n) time

• Binary Search is O(logn) time

• Binary Search is a much faster algorithm, particularly for

large input sizes

12

A digression on logs

It rolls down stairs alone or in pairs,

and over your neighbor’s dog,

it’s great for a snack or to put on your back,

it’s log, log, log!

- “The Log Song” from the Ren and Stimpy Show

• The log function shows up very frequently in algorithm anal-

ysis

• As computer scientists, when we use log, we’ll mean log2

(i.e. if no base is given, assume base 2)

13

Definition

• logx y is by definition the value z such that xz = y

• xlogx y = y by definition

14

Examples

• log 1 = 0

• log 2 = 1

• log 32 = 5

• log 2k = k

Note: logn is way, way smaller than n for large values of n

15



Examples

• log3 9 = 2

• log5 125 = 3

• log4 16 = 2

• log24 24100 = 100

16

Facts about exponents

Recall that:

• (xy)z = xyz

• xyxz = xy+z

From these, we can derive some facts about logs

17

Facts about logs

To prove both equations, raise both sides to the power of 2, and

use facts about exponents

• Fact 1: log(xy) = logx+ log y

• Fact 2: log ac = c log a

18

Incredibly useful fact about logs

• Fact 3: logc a = log a/ log c

To prove this, consider the equation a = clogc a, take log2 of both

sides, and use Fact 2.

19



Log facts to memorize

Memorize these facts

• Fact 1: log(xy) = logx+ log y

• Fact 2: log ac = c log a

• Fact 3: logc a = log a/ log c

These facts are sufficient for all your logarithm needs. (You just

need to figure out how to use them)

20

Logs and O notation

• Note that log8 n = logn/ log 8.

• Note that log600 n
200 = 200 ∗ logn/ log 600.

• Note that log100000 30∗n2 = 2∗logn/ log 100000+log 30/ log 100000.

• Thus, log8 n, log600 n
600, and log100000 30∗n2 are all O(logn)

• In general, for any constants k1 and k2, logk1
nk2 = k2 logn/ log k1,

which is just O(logn)

21

Take Away

• All log functions of form k1 logk2
k3 ∗nk4 for constants k1, k2,

k3 and k4 are O(logn)

• For this reason, we don’t really “care” about the base of the

log function when we do asymptotic notation

• Thus, binary search, ternary search and k-ary search all take

O(logn) time

22

Important Note

• log2 n = (logn)2

• log2 n is O(log2 n), not O(logn)

• This is true since log2 n grows asymptotically faster than

logn

• All log functions of form k1 logk2
k3
k4 ∗nk5 for constants k1, k2,

k3,k4 and k5 are O(logk2 n)

23



In-Class Exercise

Simplify and give O notation for the following functions. In the

big-O notation, write all logs base 2:

• log 10n2

• log5(n/4)

• log2 n4

• 2log4 n

• log log
√
n

24

Does big-O really matter?

Let n = 100000 and ∆t = 1µs

logn 1.2 ∗ 10−5 seconds√
n 3.2 ∗ 10−4 seconds

n .1 seconds
n logn 1.2 seconds
n
√
n 31.6 seconds

n2 2.8 hours
n3 31.7 years
2n > 1 century

(from Classic Data Structures in C++ by Timothy Budd)

25

Another Interview Question

• The Question: Design an algorithm to return the largest sum

of contiguous integers in an array of ints

• Example: if the input is (−10,2,3,−2,0,5,−15), the largest

sum is 8, which we get from (2,3,−2,0,5).

26

A Naive Algorithm

MaxSeq1 (int arr[], int n)

int max = 0;

for (int i = 0;i<n;i++)

for (int j=i;j<n;j++)

int sum = 0;

for (int k=i;k<=j;k++)

sum += arr[k];

if (sum > max)

max = sum;

return max;

27



Analysis

• Need to count the total number of operations of MaxSeq1

• Might as well assume time to do the inner loop is 1 (since

it’s a constant and therefore O(1))

• Let f(n) be the runtime for an array of size n

f(n) =
n∑

i=1

n∑

j=i

j∑

k=i

1 (1)

=
n∑

i=1

n∑

j=i

(j − i) (2)

=
n∑

i=1

n−i∑

j=1

j (3)

=
n∑

i=1

((n− i)/2)(n− i+ 1) (4)

28

Analysis (II)

f(n) =
n∑

i=1

((n− i)/2)(n− i+ 1) (5)

=
n−1∑

i=1

(i/2)(i+ 1) (6)

= 1/2 ∗
n−1∑

i=1

(i2 + i) (7)

= 1/2 ∗ (
n−1∑

i=1

i2 +
n−1∑

i=1

i) (8)

= 1/2 ∗ (O(n3) +O(n2)) (9)

= O(n3) (10)

29

Challenge

• MaxSeq1 is very slow

• This kind of algorithm won’t impress an interviewer

• Can you do better?

30

Todo

• Finish pretest, due next Tuesday!

• Sign up for the class mailing list (cs361)

• Read Chapter 3 (Growth of Functions) in textbook

31


