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Abstract

The speed of computer processors is growing rapidly in
comparison to the speed of DRAM chips.  The cost of a
cache miss, measured in processor clock cycles, is increas-
ing exponentially, and this is quickly becoming a bottle-
neck for indexing in main memory.  We study several
indexing data structures on a simulated architecture and
show that the relative performance of cache-conscious
indexing structures is increasing with memory latency.  In
addition, we show that top-down algorithms for maintain-
ing these structures reduce the total instruction count,
leading to a modest improvement in execution time over
the corresponding bottom-up algorithms.

1.  Introduction

Note: All figures and tables appear at the end of this
document due to a formatting problem.

The speed of computer processors is growing rap-
idly in comparison to the speed of DRAM chips.
The processor clock cycle has been decreasing at a
rate of roughly 70% every year, while the cycle time
of common DRAM chips is decreasing by about
33% every 10 years [6].  These trends indicate that
the cost of a cache miss, measured in processor
clock cycles, is increasing at an exponential rate.

Data structures used for indexing in main memory
databases that are not optimized for cache perfor-
mance will suffer due to the increasing cost of main
memory access.  This problem has already been
studied for indexing in secondary storage where the
cost of magnetic storage has been problematic for a
long time [3].  The effects of caches on indexing
performance are comparatively new and have the
following distinguishing characteristics: cache
blocks are much smaller than disk pages, cache
replacement policies are fixed and have limited
associativity, and cache access times are much
shorter than secondary storage, relative to the pro-
cessor, so it is insufficient to simply equate a tree’s
depth with its access time as is done for secondary
storage.

We study the main memory performance of a vari-
ety of existing techniques for maintaining balanced

trees, including B+-trees [3], AVL trees, treaps [11],
and two variants of the top-down deterministic skip
list [9].  Experimental data is measured using both
current hardware and the SimpleScalar tool set [1]
for detailed simulation of a modern processor.  Our

results indicate that cache-conscious indexing data
structures currently outperform their counterparts
by approximately 48%. A factor of five (25)
increase in memory latency increases the relative
performance difference to 77% (84%).

Another aspect of balanced trees that is important to
consider is their implementation difficulty.  Munro
et al. propose that deterministic skip lists using top-
down operations are simpler to understand and
implement than many of the alternatives [9].  Top-
down operations perform rebalancing in a single,
downward pass through the tree, while bottom-up
operations search on the way down and rebalance
on the way back up, requiring the use of a stack or
parent pointers [5].  Top-down operations also lead
to an average reduction of 31% in total instruction
count for our experiments.  Because of this reduc-
tion a cache-conscious version of the basic skip list

currently outperforms the corresponding B+-tree by
12%, though this advantage will decrease with time
as memory access time begins to dominate overall
performance.  Still, if the performance of top-down
and bottom-up algorithms are comparable then the
simplest implementation should be chosen.

2.  Skip Lists

Skip lists were originally introduced by Pugh as a
randomized alternative to search trees [10].  Con-
ceptually, a skip list represents the set of elements as
a number of ordered chains equal to its height.  All
elements appear in the bottom chain, and each level
above that contains a fraction p of the elements in
the chain  below it.  Operations defined on this
structure, illustrated in Figure 1, have expected log-
arithmic time.

A perfectly balanced skip list of order k requires that
every kth node of height at least h is of height at
least h+1 [9].  In the probabilistic case, k=1/p.  Two
elements in a given chain are said to “skip” k-1 ele-
ments in the chain below them.  The skipped ele-
ments form a gap.  In order to give the skip list
deterministic logarithmic time bounds, the perfect
balance condition is relaxed to allow a variable
width gap.  A 1-2 skip list, for example, allows a
gap of 1 or 2 and has a corresponding 2-3 tree [7].

Searching in a skip list begins at the head of the
highest level chain, and at each point the decision is
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made to move either down or right.  At each level,
the search proceeds right as long as the next key at
the current level is less than the search key, then it
moves down and repeats the process.  There are
never more than the gap size number of rightward
motions before the search moves down.

The correspondence between search trees and skip
lists is easy to generalize.  The elements forming a
gap of size k-1 correspond to a multi-way tree node
with k-1 keys and k children.  Top-down algorithms
for insertion and deletion in 2-3-4 trees exist [5],
and they are used as a basis for the top-down 1-2-3
skip list [9].

2.1  Top-down 1-2-3 Skip List

In its simplest form, the top-down 1-2-3 skip list
uses a linked representation with fixed-size nodes,
as illustrated in Figure 2.  Several modifications
have been made to the array representation.  First,
instead of using the next element’s key for compari-
son, each key is stored at the node where it is actu-
ally used.  Second, a new key named max that is
greater than any key in the set is used to terminate
each chain.  The last key of any gap is always
greater than the search key, and is called the high
key.  Though a comparison against the high key is
redundant computation, it simplifies the code and
has other uses as well.  Additionally, there is a
dummy head node and two sentinel nodes bottom
and tail.  Having made these modifications the rep-
resentation is now somewhere between a skip list
and a binary tree.

C code for search and lookup are given by Munro et
al. using the following type definition:

typedef struct _Node Node;
struct _Node{
int k;
Node *r, *d; 

};

Search is written as:

Node* search(int v){
Node* x = head;
bottom->k = v;
while(v != x->k)
x = (v < x->k)?x->d:x->r;

return x;
}

The top-down insertion routine uses a precondition
before descending into a gap ensuring that it can
perform any necessary splits at the next level down.
A full gap (of size three, in this case) must be split

(into two gaps of size one) in order to meet this con-
dition.  In order to test whether the node x’s gap is
full, it uses the expression (x->k == x->d->r-
>r->r->k).  The function returns 1 on a success-
ful insertion and 0 on failure:

int insert(int v){
node *t, *x = head;
bottom->key = v;
for(; x != bottom; x = x->d){
while(v > x->k)
x = x->r;

if(x->d == bottom &&
 v == x->key)
return 0;

if(x->d == bottom ||
 x->k == x->d->r->r->r->k){
t = new(Node);
t->r = x->r;
t->d = x->d->r->r;
x->r = t;
t->k = x->k;
x->k = x->d->r->k;

}
}
if(head->r != tail){
t = new(Node);
t->d = head;
t->r = tail;
t->k = max;
head = t;

}
return 1;

}

Deletion uses the opposite precondition; it must
ensure that it can perform any necessary concatena-
tions at the next level down.  A gap at minimum
capacity (which is tested with the expression (x-
>k == x->d->r->k)) is dealt with in four
cases.  An adjacent gap must be found either to the
right or the left, these two cases are treated differ-
ently.  If the adjacent gap is also at minimum capac-
ity then they are concatenated to form a single gap
of size three.  If the adjacent gap is not at minimum
capacity then an element is borrowed from that gap.
When a match is found at the bottom of the skip list
the node is removed from the list in one of two
ways, depending on whether it is the first element of
a gap or not.  Finally, the first interior node with a
key that matches the deleted key must be revisited
and a second downward pass replaces the deleted
key with the next greatest value in the set.  Code for
delete is supplied in Appendix A.
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Note that there is no recursion, nor the use of a stack
or parent pointers in this code, therefore it is easier
to understand.  Bottom-up algorithms, on the other
hand, require one of these mechanisms to keep track
of nodes that have been visited, and this generally
complicates program structure.

2.2  Higher order top-down skip lists

Higher order skip lists are constructed by allowing
larger gaps.  In general a skip list that allows a gap
of (m/2)-1, ..., (m-1) corresponds to a B-tree of order
m.  To obtain the storage efficiency of a B-tree,
however, it is necessary to place all the keys and
down pointers in a gap into the same “page”.  Since
all the keys in a skip list are stored in the bottom

chain, the corresponding B-tree is actually a B+-
tree.  Using this representation, the paged 1-2-3 skip
list would appear as in Figure 3.  The only structural

differences between the paged skip list and the B+-
tree are:

• The high key occupies one extra key per skip list
node

• Right links are used on internal and external

nodes, whereas the B+-tree has them only on
external nodes.

Other than these, the only thing that distinguishes
the two data structures is that B-trees are bottom-up
while the skip list is top-down.

Rewriting the top-down algorithms given above to
use the paged representation is surprisingly simple.
Deletion is simplified by using an explicit count
instead of key comparisons to detect overflow and
underflow, making it is no longer necessary to
revisit internal nodes after a key is deleted.  Deleted
keys are allowed to remain in the skip list just as in

the B+-tree.  The borrowing operations are replaced
with redistribution operations, to reduce the chances
of future underflow.

The presence of right links in the paged skip list is a
matter of convenience only, in order to support
sequential access.  Internal nodes have the same for-
mat as external nodes, so their right links are main-
tained as well, but they are not actually used by any
of the dictionary operations.

2.3  Other concerns and applications

Concurrency is very important in database applica-
tions.  Top-down algorithms are inherently concur-
rent, since they only require locking a fixed-size
context around the current node during any opera-

tion.  A related issue when secondary storage is
involved is the efficient handling of blocked writers
(allowing readers to pass through).  It is interesting
to note that the two structural extensions used in

Lehman and Yao’s Blink-tree for efficient concur-

rency in B*-trees are the same two used in the skip
list–a high key and right links on internal nodes [8].
Using their scheme, no read locks are required
because the high key and right pointer allow a
reader to find the adjacent sibling in case a concur-
rent modification has occurred.  Their techniques
should apply to top-down algorithms in a similar
fashion.

The skip list thus presented can serve as a priority
queue without modification since the minimum key
can be easily found in constant time and deleted in
logarithmic time [2].

3.  Experimental Results

The linked skip list, paged skip list, B+-tree, AVL
tree, and treap were each programmed in C.  Two

variations on the B+-tree were tested, one using
binary search within the node and one using sequen-

tial search.  The paged skip list and B+-tree allow
their node size to be varied at compile-time in order
to study the effect of tuning the data structure to the
cache-block size.  For plotting results as a function
of node size, the non-variable-size structures are
reported for every node size tested and appear as a
flat line.  Only node sizes that are a power of two
were tested.  For simplicity, it was assumed that
each key, datum, and pointer occupies one 32-bit
word.  A cache-block of size 2m words can contain
a B+-tree of order m.  Due to the extra space occu-
pied by the high key in the skip list, its branching

factor is always one less than the corresponding B+-
tree.  For example, a 32-word cache block has m=16
and a node size of 128 bytes.

An experiment was constructed using the UC Ber-
keley Home IP HTTP traces [4].  These traces con-
sist of a total of 9,244,728 client HTTP requests
taken over a period of 18 days.  A keys was gener-
ated from each request as follows.  The high 16-bits
of each key were taken as a hash of the server’s IP
address, and the low 16-bits were taken as a hash of
the request string.  There are 2,663,855 unique keys
using this method.  A tree is built by inserting every
unique key into the tree in random order, then
searching for each key in the order it appears in the
trace, and then deleting each key in random order.
The intent of this setup was to preserve any spatial
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and temporal locality in the trace for the search por-
tion of the workload.  Keys are clustered spatially
by the server each request was bound for, and have
whatever temporal locality that was present in the
original traces.

The experiments were run on an Intel Pentium II
Xeon processor running at 450 MHz and simulated
on the SimpleScalar architecture.  Since the Sim-
pleScalar out-of-order simulator is quite slow, a
short 4-hour fragment of the traces were used for
simulation.  The shortened data set contains 95,769
requests and 61,308 unique keys.

Figure 4 shows the results of running the experi-
ment on three processor configurations: the Intel
processor and the SimpleScalar processor with
memory latencies of 18 (the default value) and 100
cycles.  The SimpleScalar processor was configured
with a 32K split L1 I- and D-cache with 64 byte
blocks and a 256K unified L2 cache with 128 byte
blocks.  The AVL tree is the best performing fixed-
node-size data structure, and the paged skip list is
the best performing variable-node-size data struc-
ture.  Moreover, the gap between the cache-con-
scious data structures and their counterparts is
growing, as shown by the 100 cycle memory latency
configuration.  The paged skip list outperforms the

sequential-search B+-tree by 12% on the Intel pro-
cessor.

Table 1 lists various quantities describing each data
structure for a node size of 128 bytes on the Sim-
pleScalar processor.  These values depend only on
the specific algorithms used and not the memory
latency.  The cache-conscious data structures not
only improve access time, but they also improve
storage efficiency.  The storage ratio is given as the
number of words of overhead per key/datum pair in
the index.  The two skip list implementations
require 31% fewer instructions, on average, than the
bottom-up methods.

Table 2 lists the cache performance of each data
structure.  The three cache-conscious data structures
produce significantly fewer cache misses in both
levels of the cache, by a factor of five or more in the
L2 cache.  These values vary only slightly with
memory latency, since latencies can effect the out-
of-order pipeline.  They were measured for the 18
cycle memory latency configuration.

Table 3 shows the execution time for each data
structure with memory latencies of 18, 100, and 500
cycles and the corresponding cycles per instruction
(CPI).  The cache-conscious data structures are

result in a 48% improvement in total cycles, on
average, compared to their counterparts, with a
memory latency of 18 cycles.  Increasing the mem-
ory latency to 100 cycles (500 cycles) leads to an
improvement of 77% (84%).  These results indicate
that the performance of the cache-conscious data
structures is steadily increasing relative to the oth-
ers.

Figure 5 shows the results of carrying the experi-
ment out for large node sizes on the full data set

with the binary-search B+-tree, the paged skip list,
and the AVL tree.  Large nodes are inefficient for
two reasons.  First, their cache behavior is identical

to a binary search tree, so the binary B+-tree
approaches the AVL tree for searching with large
node sizes.  Second, the cost of update operations
becomes dominated by the cost of memory-to-mem-
ory copies for updating individual nodes.  These
copies also disrupt the cache.  Node sizes larger than
1024 bytes (m=128) have worse performance on
insert and delete than the AVL tree due to this effect.
The cross-over point at which binary search begins
to outperform sequential search occurs at a node
size of 2048 bytes (m=256).

4.  Conclusion

Cache performance is a growing bottleneck for dic-
tionary data structures.  The cache-conscious data
structures measured in this study already outper-
form their counterparts by 48%.  This value will
increase steadily over the next few years to 77% or
more when cache misses begin to cost hundreds of
processor clock cycles.

Data structures that are optimized for reducing the
number of accesses to secondary storage will be
effected by this trend as well since they have the
poor cache-performance of a binary search.  There
is currently no work that we know of that adopts a
two-level strategy for reducing both cache and disk
accesses.  Optimizing for both levels of the storage
hierarchy will increase in importance as the cost of a
cache miss increases.

The top-down algorithms for maintaining skip lists
are easier to understand and implement than the cor-
responding bottom-up algorithms for B-trees, and
they reduce the instruction count as well.  Given that
their performance is similar in main memory, the
paged skip list seems like a good alternative to B-
trees.
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Appendix A: Code for delete

int delete(int k){
Node *l, *t, *t2, *r, *x;
Node *f = NULL;
int d = 0;

for(l = NULL, x = head->d;
x != bottom;
l = NULL, x = x->d){

for (; k > x->k; 
l = x, x = x->r) { }

if(x->d == bottom){
if(k == x->k){
if(l == NULL){
r = x->r;
x->k = r->k;
x->r = r->r;
free(r);

} else {
l->r = x->r;
free(x);
x = l;

}
if(f) 
fixup(f,k,x->k);

d = 1;
}

} else {
if(k == x->k && f == NULL)
f = x;

if(x->d->r->k == x->k){
if(l == NULL){
r = x->r;
if(r->d->r->k == r->k){
x->k = r->k;
x->r = r->r;
free(r);

} else {
x->k = r->d->k;
r->d = r->d->r;

}
} else {
if (l->d->r->k == l->k){
l->k = x->k;
l->r = x->r;
free(x);

} else {
t = l->d;
while(t->r != x->d){
t2 = t;
t = t->r;

}
l->k = t2->k;
x->d = t;

}
}

}
}

}
if(head->d->r == tail){
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t = head;
head = head->d;
free(t);

}
return d;

}
void fixup(Node *f, 

int oldk, int newk){
Node *x;
for(x = head->d; 

x != bottom; x = x->d){
while(oldk > x->k)
x = x->r;

if(x->k == oldk)
x->k = newk;

}
}

A skip list is comprised of a hierarchy of chains.  Every key in the set resides in the bottom chain, and each level above
that contains a fraction p of the elements in the chain below it.

Figure 1: A skip list with the standard array implementation

20 30 40 50

head

The linked skip list representation moves keys into the node where they are actually used and adds a high key.

Figure 2: A skip list with the linked list representation
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(a) (b)

The skip list (a) resembles a B+-tree (b) except that it has a high key and right links at all nodes, not just in the external
nodes.

Figure 3: A skip list with the paged representation, and corresponding B+-tree
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Figure 4: Performance comparison for three processor configurations
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These graphs show the time taken by the dictionary operations for the full data set on the Intel processor.  Searching in
large nodes has the same performance as the (binary) AVL tree.  For large nodes the cost of insertion and deleteion
becomes dominated by the cost of memory-to-memory copies when updating individual nodes (which also disrupts the
cache).  They show the node size at which binary-search begins to outperform sequential search.  This indicates that
choosing disk-sized pages without regard for cache-performance incurs a serious (and growing) performance penalty in
main memory.

Figure 5: Large node sizes
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Tree Height
Storage 
Ratio

Inst. 
Count

Loads Stores Branches

AVL 19 2.50 141M 38.3M 
(27%)

21.8M 
(15%)

34.3M 
(24%)

Treap 0 2.50 124M 34.4M 
(28%)

19.2M 
(15%)

29.1M 
(23%)

Skip List (P) 4 1.69 88.3M 19.6M 
(22%)

6.63M 
(7.5%)

17.7M 
(20%)

Skip List (L) 13 3.14 87.9M 30.9M 
(35%)

5.91M 
(6.7%)

23.1M 
(26%)

B+Tree (S) 4 1.66 125M 28.1M 
(22%)

14.2M 
(11%)

26.0M 
(21%)

B+Tree (B) 4 1.66 123M 26.7M 
(22%)

14.2M 
(12%)

25.5M 
(21%)

Table 1: Various quantities for each data structure (node size = 128 bytes)
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Tree
L1 L2

Accesses Misses Writeback Accesses Misses Writeback

AVL 62.5M 2.04M 
(3.3%)

1.12M 
(1.8%)

3.17M 910K 
(29%)

521K 
(16%)

Treap 56.8M 3.30M 
(5.8%)

1.47M 
(2.6%)

4.77M 1.48M 
(31%)

706K 
(15%)

Skip List (P) 27.5M 880K 
(3.2%)

364K 
(1.3%)

1.99M 220K 
(11%)

153K 
(7.7%)

Skip List (L) 42.7M 4.10M 
(9.6%)

507K 
(1.2%)

4.61M 2.02M 
(44%)

367K 
(8.0%)

B+Tree (S) 43.9M 888K 
(2.0%)

385K 
(0.88%)

1.96M 223K 
(11%)

156K 
(8.0%)

B+Tree (B) 41.1M 882K 
(2.1%)

383K 
(0.93%)

1.51M 221K 
(15%)

156K 
(10%)

Table 2: Cache performance for each data structure (node size = 128 bytes)

Tree
Inst. 

Count

18 cycles 100 cycles 500 cycles

Cycles CPI Cycles CPI Cycles CPI

AVL 141M 126M 0.89 305M 
(+142%)

2.16 
(+142%)

767M 
(+508%)

5.42 
(+508%)

Treap 124M 155M 1.25 556M 
(+258%)

4.48 
(+258%)

1.48G 
(+851%)

11.9 
(+851%)

Skip List (P) 88.3M 64.0M 0.72 102M 
(+59%)

1.15 
(+59%)

201M 
(+215%)

2.28 
(+215%)

Skip List (L) 87.9M 162M 1.85 650M 
(+300%)

7.40 
(+300%)

1.82G 
(+1021%)

20.7 
(+1021%)

B+Tree (S) 125M 78.0M 0.62 115M 
(+48%)

0.92 
(+48%)

217M 
(+179%)

1.74 
(+179%)

B+Tree (B) 123M 89.8M 0.73 127M 
(+41%)

1.03 
(+41%)

229M 
(+155%)

1.87 
(+156%)

Table 3: Effect of increasing memory latency (node size = 128 bytes)
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