You are free to work with your group, or use any book or the web as a resource in doing this homework assignment. However, you must write up the work yourself. In the first three questions, assume $T(n)$ is a constant for $n \leq 2$.

1. Consider the recurrence $T(n) = 2T(n/2) + n^3$

 (a) Use the recurrence tree method to get a tight upper bound (i.e. big-O) on the solution to this recurrence

 (b) Now use annihilators (and change of variables) to get a tight upper on the solution to this recurrence. (your two bounds should match)

2. Consider the recurrence $T(n) = 16T(n/4) + n^2$

 (a) Use the recurrence tree method to get a tight upper bound (i.e. big-O) on the solution to this recurrence

 (b) Now use annihilators (and change of variables) to get a tight upper on the solution to this recurrence. (your two bounds should match)

3. Consider the recurrence $T(n) = 2T(n/4) + 1$

 (a) Use the recurrence tree method to get a tight upper bound (i.e. big-O) on the solution to this recurrence

 (b) Now use annihilators (and change of variables) to get a tight upper on the solution to this recurrence. (your two bounds should match)

4. Consider the following function:
int f (int n) {
 if (n==0) return 0;
 else if (n==1) return 1;
 else {
 int val = 4*f (n-1);
 val = val - 4*f (n-2);
 return val;
 }
}

(a) Write a recurrence relation for the value returned by f. Solve the recurrence exactly. (Don’t forget to check it)

(b) Write a recurrence relation for the running time of f. Get a tight upperbound (i.e. big-O) on the solution to this recurrence.

5. CLRS Exercise 6.4-2 (prove the correctness of HeapSort)