Today’s Outline

- Intro to Asymptotic Analysis
- Why do we care?
- Another interview problem
- Some solutions to the problem
- Todo list

Random-access machine model

- We will use RAM model of computation in this class
- All instructions operate in serial
- All basic operations (e.g. add, multiply, compare, read, store, etc.) take unit time
- All “atomic” data (chars, ints, doubles, pointers, etc.) take unit space

How to analyze an algorithm?

- There are several resource bounds we could be concerned about: time, space, communication bandwidth, logic gates, etc.
- However, we are usually most concerned about time
- Recall that algorithms are independent of programming languages and machine types
- Q: So how do we measure resource bounds of algorithms

Administrative

- Kanglin Xu, Office hours: M 4:30-6:30 and Weds 4:30 to 6:30, both in FEC 301C
- Sections: if you are in the CS dept, you must register for one of the two sections (Th 3:30-4:20 or F 1:00-1:50)
- Book: ’Introduction to Algorithms’ by Cormen, Leiserson, Rivest, and Stein
- Pretest due on Tuesday

Worst Case Analysis

- We’ll generally be pessimistic when we evaluate resource bounds
- We’ll evaluate the run time of the algorithm on the worst possible input sequence
- Amazingly, in most cases, we’ll still be able to get pretty good bounds
- Justification: The “average case” is often about as bad as the worst case.
Example Analysis

- Consider the problem discussed last Tuesday about finding a redundant element in an array.
- Let’s consider the more general problem, where the numbers are 1 to \(n \) instead of 1 to 1,000,000.

Algorithm 1

- Create a new “count” array of ints of size \(n \), which we’ll use to count the occurrences of each number. Initialize all entries to 0.
- Go through the input array and each time a number is seen, update its count in the “count” array.
- As soon as a number is seen in the input array which has already been counted once, return this number.

Algorithm 2

- Iterate through the input array, summing up all the numbers, let \(S \) be this sum.
- Let \(x = S - (n + 1)n/2 \)
- Return \(x \).

Example Analysis: Time

- Worst case: Algorithm 1 does \(5n \) operations (\(n \) initial to 0 in “count” array, \(n \) reads of input array, \(n \) reads of “count” array (to see if value is 1), \(n \) increments, and \(n \) stores into count array).
- Worst case: Algorithm 2 does \(2n + 4 \) operations (\(n \) reads of input array, \(n \) additions to value \(S \), 4 computations to determine \(x \) given \(S \)).

Example Analysis: Space

- Worst Case: Algorithm 1 uses \(n \) additional units of space to store the “count” array.
- Worst Case: Algorithm 2 uses 2 additional units of space.

A Simpler Analysis

- Analysis above can be tedious for more complicated algorithms.
- In many cases, we don’t care about constants. \(5n \) is about the same as \(2n + 4 \) which is about the same as \(an + b \) for any constants \(a \) and \(b \).
- However we do still care about the difference in space: \(n \) is very different from 2.
- Asymptotic analysis is the solution to removing the tedium but ensuring good analysis.
What is asymptotic analysis?

- A tool for analyzing time and space usage of algorithms
- Assumes input size is a variable, say \(n \), and gives time and space bounds as a function of \(n \)
- Ignores multiplicative and additive constants
- Concerned only with the rate of growth
- E.g. Treats run times of \(n \), \(10,000 \times n + 2000 \), and \(.5n + 2 \) all the same (We use the term \(O(n) \) to refer to all of them)

More Examples

- Algorithm 1 and 2 both take time \(O(n) \)
- Algorithm 1 uses \(O(n) \) extra space
- But, Algorithm 2 uses \(O(1) \) extra space

What is Asymptotic Analysis? (II)

- Informally, \(O \) notation is the leading (i.e. quickest growing) term of a formula with the coefficient stripped off
- \(O \) is sort of a relaxed version of \(\leq \)
- E.g. \(n \) is \(O(n) \) and \(n \) is also \(O(n^2) \)
- By convention, we use the smallest possible \(O \) value i.e. we say \(n \) is \(O(n) \) rather than \(n \) is \(O(n^2) \)

Questions

express the following in \(O \) notation

- \(n^3/1000 - 100n^2 - 100n + 3 \)
- \(\log n + 100 \)
- \(10 \times \log^2 n + 100 \)
- \(\sum_{i=1}^{n} i \)

More Examples

- E.g. \(n \), \(10,000n - 2000 \), and \(.5n + 2 \) are all \(O(n) \)
- \(n + \log n, n - \sqrt{n} \) are \(O(n) \)
- \(n^2 + n + \log n, 10n^2 + n - \sqrt{n} \) are \(O(n^2) \)
- \(n \log n + 10n \) is \(O(n \log n) \)
- \(10 \times \log^2 n \) is \(O(\log^2 n) \)
- \(n\sqrt{n} + n \log n + 10n \) is \(O(n \sqrt{n}) \)
- \(10,000, 2^{50} \) and \(4 \) are \(O(1) \)

A digression on logs

It rolls down stairs alone or in pairs, and over your neighbor’s dog, it’s great for a snack or to put on your back, it’s log, log, log! - “The Log Song” from the Ren and Stimpy Show

- The log function shows up very frequently in algorithm analysis
- As computer scientists, when we use log, we’ll mean \(\log_2 \)
 (i.e. if no base is given, assume base 2)
Definition

- \(\log_y x \) is by definition the value \(z \) such that \(x^z = y \)
- \(x^{\log_x y} = y \) by definition

Examples

- \(\log_3 9 = 2 \)
- \(\log_5 125 = 3 \)
- \(\log_4 16 = 2 \)
- \(\log_{24} 24^{100} = 100 \)

Note: \(\log n \) is way, way smaller than \(n \) for large values of \(n \)

Facts about exponents

Recall that:

- \((x^y)^z = x^{yz} \)
- \(x^{y+z} = x^y x^z \)

From these, we can derive some facts about logs.

Facts about logs

To prove both equations, raise both sides to the power of 2, and use facts about exponents.

- Fact 1: \(\log(xy) = \log x + \log y \)
- Fact 2: \(\log a^c = c \log a \)

Memorize these two facts

Incredibly useful fact about logs

- Fact 3: \(\log_c a = \frac{\log_a a}{\log_a c} \)

To prove this, consider the equation \(a = c^{\text{log}_c a} \), take \(\log_2 \) of both sides, and use Fact 2. **Memorize this fact**

Examples
Log facts to memorize

- Fact 1: \(\log(xy) = \log x + \log y \)
- Fact 2: \(\log a^c = c \log a \)
- Fact 3: \(\log_b a = \log a / \log b \)

These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)

Questions

Simplify and give \(O \) notation for the following:

- \(\log 10 \times x^2 \)
- \(\log^2 x \)
- \(\log \log \sqrt{n} \)
- \(2^{\log_4 x} \)

Take Away

- All log functions of form \(k_1 \log k_2 n^{k_3} \) for constants \(k_1, k_2 \) and \(k_3 \) are \(O(\log n) \)
- For this reason, we don’t really “care” about the base of the log function when we do asymptotic notation
- Thus, binary search, ternary search and k-ary search all take \(O(\log n) \) time

Todo

- Finish pretest, due next Tuesday!
- Sign up for the class mailing list (cs361)
- Read Chapter 3 (Growth of Functions) in textbook

Logs and \(O \) notation

- Note that \(\log_8 n = \log n / \log 8 \)
- Note that \(\log_{600} n^{200} = 200 \times \log n / \log 600 \)
- Note that \(\log_{100000} 30 \times n^2 = 2 \times \log n / \log 100000 + \log 30 / \log 100000 \)
- Thus, \(\log_8 n, \log_{600} n^{600}, \) and \(\log_{100000} 30 \times n^2 \) are all \(O(\log n) \)
- In general, for any constants \(k_1 \) and \(k_2 \), \(\log_{k_1} n^{k_2} = k_2 \log n / \log k_1 \), which is just \(O(\log n) \)