Search in BT

Tree-Search(x,k){
 if (x=nil) or (k = key(x)){
 return x;
 }
 if (k<key(x)){
 return Tree-Search(left(x),k);
 }else{
 return Tree-Search(right(x),k);
 }
}

Analysis

- Let \(h \) be the height of the tree
- The run time is \(O(h) \)
- Correctness???

Previous In-Class Exercise

- Q1: What is the loop invariant for Tree-Search?
- Q2: What is Initialization?
- Q3: Maintenance?
- Q4: Termination?

HW Questions

- Are there any questions on the current HW?
• To show: If key k exists in the tree, Tree-Search returns the elem with key k, otherwise Tree-Search returns nil.

• Loop Invariant: If key k exists in the tree, then it exists in the subtree rooted at node x.

• Initialization: Before the first iteration, x is the root of the entire tree, therefore if key k exists in the tree, then it exists in the subtree rooted at node x.

• Maintenance: Assume at the beginning of the procedure, it's true that if key k exists in the tree that it is in the subtree rooted at node x. There are three cases that can occur during the procedure:
 - Case 1: key(x) is k. In this case, the procedure terminates and returns x, so the invariant continues to hold.
 - Case 2: $k < $key($x$). In this case, by the Search Tree Property, all keys in the subtree rooted on the right child of x are greater than k (since key(x) > k). Thus, if k exists in the subtree rooted at x, it must exist in the subtree rooted at left(x).
 - Case 3: $k > $key($x$). In this case, by the Search Tree Property, all keys in the subtree rooted on the right child of x are less than k (since key(x) < k). Thus, if k exists in the subtree rooted at x, it must exist in the subtree rooted at right(x).

• By the loop invariant, we know that when the procedure terminates, if k is in the tree, then it is in the subtree rooted at x. If k is in fact in the tree, then x will never be nil, and so the procedure will only terminate by returning a node with key k. If k is not in the tree, then the only way the procedure will terminate is when x is nil. Thus, in this case also, the procedure will return the correct answer.

• Tree Minimum(x): Return the leftmost child in the tree rooted at x.

• Tree Maximum(x): Return the rightmost child in the tree rooted at x.

Tree-Successor

Tree-Successor(x){
 if (right(x) != null){
 return Tree-Minimum(right(x));
 }
 y = parent(x);
 while (y != null and x = right(y)){
 x = y;
 y = parent(y);
 }
 return y;
}
Successor Intuition

- Case 1: If right subtree of x is non-empty, successor(x) is just the leftmost node in the right subtree
- Case 2: If the right subtree of x is empty and x has a successor, then successor(x) is the lowest ancestor of x whose left child is also an ancestor of x. (i.e. the lowest ancestor of x whose key is \geq key(x))

Insertion

Insert(T,x)

1. Let r be the root of T.
2. Do Tree-Search(r,key(x)) and let p be the last node processed in that search
3. If p is nil (there is no tree), make x the root of a new tree
4. Else if key(x) \leq p, make x the left child of p, else make x the right child of p

Deletion

- Code is in book, basically there are three cases, two are easy and one is tricky
- Case 1: The node to delete has no children. Then we just delete the node
- Case 2: The node to delete has one child. Then we delete the node and “splice” together the two resulting trees

Analysis

- All of these operations take $O(h)$ time where h is the height of the tree
- If n is the number of nodes in the tree, in the worst case, h is $O(n)$
- However, if we can keep the tree balanced, we can ensure that $h = O(\log n)$
- Red-Black trees can maintain a balanced BST

Randomly Built BST

- What if we build a binary search tree by inserting a bunch of elements at random?
- Q: What will be the average depth of a node in such a randomly built tree? We’ll show that it’s $O(\log n)$
- For a tree T and node x, let $d(x,T)$ be the depth of node x in T
- Define the total path length, $P(T)$, to be the sum over all nodes x in T of $d(x,T)$
“Shut up brain or I'll poke you with a Q-Tip” - Homer Simpson

Note that the average depth of a node in \(T \) is

\[
\frac{1}{n} \sum_{x \in T} d(x, T) = \frac{1}{n} P(T)
\]

Thus we want to show that \(P(T) = O(n \log n) \)

Let \(T_l, T_r \) be the left and right subtrees of \(T \) respectively. Let \(n \) be the number of nodes in \(T \)

Then \(P(T) = P(T_l) + P(T_r) + n - 1 \). Why?

We have \(P(n) = \frac{2}{n} \sum_{k=1}^{n-1} P(k) + \Theta(n) \)

This is the same recurrence for randomized Quicksort

In your hw (problem 7-2), you show that the solution to this recurrence is \(P(n) = O(n \log n) \)

Let \(P(n) \) be the expected total depth of all nodes in a randomly built binary tree with \(n \) nodes

Note that for all \(i, 0 \leq i \leq n - 1 \), the probability that \(T_i \) has \(i \) nodes and \(T_{n-i} \) has \(n-i-1 \) nodes is \(1/n \).

Thus \(P(n) = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n-i-1) + n-1) \)

\(P(n) \) is the expected total depth of all nodes in a randomly built binary tree with \(n \) nodes.

We’ve shown that \(P(n) = O(n \log n) \)

There are \(n \) nodes total

Thus the expected average depth of a node is \(O(\log n) \)

\(P(n) = \frac{1}{n} \sum_{i=0}^{n-1} (P(i) + P(n-i-1) + n-1) \) \hspace{1cm} (1)

\(= \frac{1}{n} \sum_{i=0}^{n-1} P(i) + \frac{1}{n} \sum_{i=0}^{n-1} P(n-i-1) + \frac{1}{n} (n-1) \) \hspace{1cm} (2)

\(= \frac{1}{n} \sum_{i=0}^{n-1} P(i) + P(n-i-1) + \Theta(n) \) \hspace{1cm} (3)

\(= \frac{2}{n} \sum_{k=1}^{n-1} P(k) + \Theta(n) \) \hspace{1cm} (4)

\(= 2 \sum_{k=1}^{n-1} P(k) + \Theta(n) \) \hspace{1cm} (5)

Take Away

- \(P(n) \) is the expected total depth of all nodes in a randomly built binary tree with \(n \) nodes.
- We’ve shown that \(P(n) = O(n \log n) \)
- There are \(n \) nodes total
- Thus the expected average depth of a node is \(O(\log n) \)
Take Away

- The expected average depth of a node in a randomly built binary tree is $O(\log n)$
- This implies that operations like search, insert, delete take expected time $O(\log n)$ for a randomly built binary tree

Warning!

- In many cases, data is not inserted randomly into a binary search tree
- I.e. many binary search trees are not “randomly built”
- For example, data might be inserted into the binary search tree in almost sorted order
- Then the BST would not be randomly built, and so the expected average depth of the nodes would not be $O(\log n)$

What to do?

- A Red-Black tree implements the dictionary operations in such a way that the height of the tree is always $O(\log n)$, where n is the number of nodes
- This will guarantee that no matter how the tree is built that all operations will always take $O(\log n)$ time
- Next time we’ll see how to create Red-Black Trees