Red-Black Properties

A BST is a red-black tree if it satisfies the RB-Properties

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black
5. For each node, all paths from the node to descendant leaves contain the same number of black nodes
Case 2 and 3

Loop Invariant

At the start of each iteration of the loop:

- Node z is red
- If parent(z) is the root, then parent(z) is black
- If there is a violation of the red-black properties, there is at most one violation, and it is either property 2 or 4. If there is a violation of property 2, it occurs because z is the root and is red. If there is a violation of property 4, it occurs because both z and parent(z) are red.

Other Balanced BSTs

- We’ll now briefly discuss some other balanced BSTs
- They all implement Insert, Delete, Lookup, Successor, Predecessor, Maximum and Minimum efficiently

AVL Trees

- An AVL tree is height-balanced: For each node x, the heights of the left and right subtrees of x differ by at most 1
- Each node has an additional height field h(x)
- Claim: An AVL tree with n nodes has height \(O(\log n) \)

Pseudocode

- Detailed Pseudocode for RB-Insert and RB-Insert-Fixup is in the book, Chapter 13.3
- There’s also a detailed proof of correctness for RB-Insert-Fixup in the same section

AVL Trees

- Claim: An AVL tree with n nodes has height \(O(\log n) \)
- Q: For an AVL tree of height \(h \), how many nodes must it have in it?
- A: We can write a recurrence relation. Let \(T(h) \) be the minimum number of nodes in a tree of height \(h \)
- Then \(T(h) = T(h - 1) + T(h - 2) + 1 \), \(T(2) = T(1) \geq 1 \)
- This is similar to the recurrence relation for Fibonacci numbers! Solution:

\[
T(h) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^h - 2
\]
AVL Trees

- So we have the equation \(n > T(h) \). Let \(\phi = \frac{1 + \sqrt{5}}{2} \). Then:

\[
\begin{align*}
 n &\geq \frac{1}{\sqrt{5}} (\phi^h) - 2 \\
 \log n &\geq \log \left(\frac{1}{\sqrt{5}} \right) + h \log \phi - 1 \\
 \log n - \log \left(\frac{1}{\sqrt{5}} \right) + 1 &\geq h \log \phi \\
 C \times \log n &\geq h
\end{align*}
\]

- Where the final inequality holds for appropriate constant \(C \), and for \(n \) large enough. The final inequality implies that \(h = O(\log n) \)

AVL Tree Insertion

- After insert into an AVL tree, the tree may no longer be height-balanced
- Need to “fix-up” the subtrees so that they become height-balanced again
- Can do this using rotations (similar to case for RB-Trees)
- Similar story for deletions

B-Trees

- B-Trees are balanced search trees designed to work well on disks
- B-Trees are not binary trees: each node can have many children
- Each node of a B-Tree contains several keys, not just one
- When doing searches, we decide which child link to follow by finding the correct interval of our search key in the key set of the current node.

B-Tree Properties

- All leaves have the same depth
- Lower and upper bounds on the number of keys a node can contain. Given as a function of a fixed integer \(t \)
 - Every node other than the root must have \(\geq (t - 1) \) keys, and \(t \) children. If the tree is non-empty, the root must have at least one key (and 2 children)
 - Every node can contain at most \(2t - 1 \) keys, so any internal node can have at most \(2t \) children

Disk Accesses

- Consider any search tree
- The number of disk accesses per search will dominate the run time
- Unless the entire tree is in memory, there will usually be a disk access every time an arbitrary node is examined
- The number of disk accesses for most operations on a B-tree is proportional to the height of the B-tree
- I.e. The info on each node of a B-tree can be stored in main memory

B-Tree Properties

- The following is true for every node \(x \)
- \(x \) stores keys, \(key_1(x) \ldots key_l(x) \) in sorted order (nondecreasing)
- \(x \) contains pointers, \(c_1(x), \ldots, c_{l+1}(x) \) to its children
- Let \(k_i \) be any key stored in the subtree rooted at the \(i \)-th child of \(x \), then \(k_1 \leq key_1(x) \leq k_2 \leq key_2(x) \ldots \leq key_l(x) \leq k_{l+1} \)
The above properties imply that the height of a B-tree is no more than \(\log_{t+1} n \), for \(t \geq 2 \), where \(n \) is the number of keys.

If we make \(t \) larger, we can save a larger (constant) fraction over RB-trees in the number of nodes examined.

A (2-3-4)-tree is just a B-tree with \(t = 2 \).

In-Class Exercise

We will now show that for any B-Tree with height \(h \) and \(n \) keys,
\[h \leq \log_{t+1} n \text{, where } t \geq 2. \]

Consider a B-Tree of height \(h > 1 \)
- **Q1:** What is the minimum number of nodes at depth 1, 2, and 3
- **Q2:** What is the minimum number of nodes at depth \(i \)?
- **Q3:** Now give a lowerbound for the total number of keys (e.g. \(n \geq \ldots \))
- **Q4:** Show how to solve for \(h \) in this inequality to get an upperbound on \(h \).

Splay Trees

- A Splay Tree is a kind of BST where the standard operations run in \(O(\log n) \) amortized time.
- This means that over \(l \) operations (e.g. Insert, Lookup, Delete, etc.), where \(l \) is sufficiently large, the total cost is \(O(l \times \log n) \).
- In other words, the average cost per operation is \(O(\log n) \).
- However a single operation could still take \(O(n) \) time.
- In practice, they are very fast.

Skip Lists

- Technically, not a BST, but they implement all of the same operations.
- Very elegant randomized data structure, simple to code but analysis is subtle.
- They guarantee that, with high probability, all the major operations take \(O(\log n) \) time.
- We’ll discuss them more next class.

High Level Analysis

Comparison of various BSTs
- **RB-Trees:** + guarantee \(O(\log n) \) time for each operation, easy to augment, – high constants
- **AVL-Trees:** + guarantee \(O(\log n) \) time for each operation, – high constants
- **B-Trees:** + works well for trees that won’t fit in memory, – inserts and deletes are more complicated
- **Splay Trees:** + small constants, – amortized guarantees only
- **Skip Lists:** + easy to implement, – runtime guarantees are probabilistic only

Which Data Structure to use?

- Splay trees work very well in practice, the “hidden constants” are small.
- Unfortunately, they can not guarantee that every operation takes \(O(\log n) \).
- When this guarantee is required, B-Trees are best when the entire tree will not be stored in memory.
- If the entire tree will be stored in memory, RB-Trees, AVL-Trees, and Skip Lists are good.