Today's Outline

- Interview question improvement
- Formal definition of big-O analysis
- Intro to Θ, Ω, ω
- Intro to correctness proofs

Important Log Facts

- \(\log^x f = (\log f)^x \)
- \(\log xy = \log(x) + \log(y) \) (multiplication binds the tightest)

Examples:

- \(\log^2 n^6 = (\log n^6)^2 = 25(\log n)^2 = 25 \log^2 n \)
- \(\log 5n = \log 5 + \log n \)

Interview Question from before

- The Question: Design an algorithm to return the largest sum of contiguous integers in an array of ints
- Example: if the input is \((-10, 2, 3, -2, 0, 5, -15)\), the largest sum is 8, which we get from \((2, 3, -2, 0, 5)\).

A Naive Algorithm

```c
MaxSeq1 (int arr[], int n)
int max = 0;
for (int i = 0; i < n; i++)
    for (int j = i; j < n; j++)
        int sum = 0;
        for (int k = i; k <= j; k++)
            sum += arr[k];
        if (sum > max)
            max = sum;
return max;
```

Naive Algorithm

- Analysis from last time showed this takes \(O(n^3) \) steps
- Worst case and best case is the same
- Can we do better?
A Better Algorithm

MaxSeq2 (int arr[], int n)
int max = 0;
for (int i = 1;i<=n;i++)
 int sum = 0;
for (int j=i;j<=n;j++)
 sum += arr[j];
 if (sum > max)
 max = sum; //and store i and j if desired
return max;

Analysis of MaxSeq2

- Let f be the number of operations this algorithm performs.
- The:
 \[
 f = \sum_{i=1}^{n} \sum_{j=i}^{n} 1
 \]
 \[
 = \sum_{i=1}^{n} (n - i + 1)
 \]
 \[
 = \sum_{i=1}^{n} i
 \]
 \[
 = (n + 1)(n/2)
 \]
 \[
 = O(n^2)
 \]

Challenge

- MaxSeq2 is much better than MaxSeq1 ($O(n^2)$ vs $O(n^3)$)
- But it’s still not great, can you do better?
- We’ll come back to this when we do recurrences

Beyond Big-O

- Both MaxSeq1 and MaxSeq2 have same best case and worst case behavior
- In a sense, we can say more about them than big-O time
- I.e. we can say more than that their run time is approx “≤” some amount
- Want a way of saying “asymptotically equal to”
- In general, want asymptotic analogues of ≤, ≥, ≈, etc.

Formal Defn of Big-O

- Before we go beyond big-O, what precisely does it mean?
- It has a precise, mathematical definition:
 - A function $f(n)$ is $O(g(n))$ if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$

Example

- Let’s try to show that $f(n) = 10n + 100$ is $O(g(n))$ where $g(n) = n$
- We need to give constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$
- In other words, we need constants c and n_0 such that $10n + 100 \leq cn$ for all $n \geq n_0$
Example

- We can solve for appropriate constants:
 \[10n + 100 \leq cn\] \hspace{1cm} (6)
 \[10 + 100/n \leq c\] \hspace{1cm} (7)
- So if \(n > 1 \), then \(c \) need be greater than 110.
- In other words, for all \(n > 1 \), \(10n + 100 \leq 110n \)
- So \(10n + 100 \) is \(O(n) \)

Another Example

- Let’s try to show that \(f(n) = n^2 + 100n \) is \(O(g(n)) \) where \(g(n) = n^2 \)
- We need to give constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)
- In other words, we need constants \(c \) and \(n_0 \) such that \(n^2 + 100n \leq cn^2 \) for all \(n \geq n_0 \)

Another Example

- We can solve for appropriate constants:
 \[n^2 + 100n \leq cn^2\] \hspace{1cm} (8)
 \[1 + 100/n \leq c\] \hspace{1cm} (9)
- So if \(n > 1 \), then \(c \) need be greater than 101.
- In other words, for all \(n > 1 \), \(n^2 + 100n \leq 101n^2 \)

Formal Defns

- \(O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \)
- \(\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \} \)
- \(\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} \)

Relatives of big-O

Following are some of the relatives of big-O:

- \(O \) “≤”
- \(\Theta \) “≡”
- \(\Omega \) “≥”
- \(o \) “<”
- \(\omega \) “>”

When would you use each of these? Examples:

- \(O \) “≤” This algorithm is \(O(n^2) \) (i.e. worst case is \(\Theta(n^2) \))
- \(\Theta \) “≡” This algorithm is \(\Theta(n) \) (best and worst case are \(\Theta(n) \))
- \(\Omega \) “≥” Any algorithm for sorting is worst case \(\Omega(n \log n) \)
- \(o \) “<” Can you write an algorithm for sorting that is \(o(n^2) \)?
- \(\omega \) “>” This algorithm is not linear, it can take time \(\omega(n) \)
Formal Defns (II)

• \(o(g(n)) = \{f(n) : \text{for any positive constant } c > 0 \text{ there exists } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0 \} \)

• \(\omega(g(n)) = \{f(n) : \text{for any positive constant } c > 0 \text{ there exists } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \} \)

Examples

- Worst case time of linear search is \(\Theta(n) \)
- Worst case time of linear search is \(\Omega(n \log n) \)
- Best case time of linear search is \(\Theta(1) \)
- Worst case time of binary search is \(o(n) \)
- Worst case time of binary search is \(\Theta(\log n) \)

More Examples

The following are all true statements:

• From last lecture, \(\sum_{i=1}^{n} i^2 \) is \(O(n^3) \), \(\Omega(n^3) \) and \(\Theta(n^3) \)
• \(\log n \) is \(o(\sqrt{n}) \)
• \(\log n \) is \(o(\log^2 n) \)
• \(10,000n^2 + 25n \) is \(\Theta(n^2) \)

Asymptotic Analysis - Take Away

- In studying behavior of algorithms, we’ll more concerned with rate of growth than with constants
- \(O, \Theta, \Omega, o, \omega \) give us a way to talk about rates of growth
- Asymptotic analysis is an extremely useful way to compare run times of algorithms
- However, empirical analysis is also important (you’ll be studying this in your project)

Correctness of Algorithms

• Another important aspect of algorithms is their correctness
• An algorithm by definition always gives the right answer to the problem
• A procedure which doesn’t always give the right answer is a heuristic
• All things being equal, we prefer an algorithm to a heuristic
• How do we prove an algorithm is really correct?

Examples

- Worst case time of linear search is \(\Theta(n) \)
- Worst case time of linear search is \(\Omega(n \log n) \)
- Best case time of linear search is \(\Theta(1) \)
- Worst case time of binary search is \(o(n) \)
- Worst case time of binary search is \(\Theta(\log n) \)

In Class Exercise

True or False? (Justify your answer)

• \(n^3 + 4 \) is \(\omega(n^2) \)
• \(n \log n^3 \) is \(\Theta(n \log n) \)
• \(\log^2 5n^2 \) is \(\Theta(\log n) \)
• \(10^{-10}n^2 + n \) is \(\Theta(n) \)
• \(n \log n \) is \(\Omega(n) \)
• \(n^3 + 4 \) is \(o(n^4) \)

(These equations represent run times of algorithms)
Loop Invariants

Must useful tool is loop invariants. Three things must be shown about a loop invariant

- **Initialization**: Invariant is true before first iteration of loop
- **Maintenance**: If invariant is true before iteration \(i\), it is also true before iteration \(i + 1\) (for any \(i\))
- **Termination**: When the loop terminates, the invariant gives a property which can be used to show the algorithm is correct

Example Loop Invariant

- **Invariant**: At the start of the \(i\)-th iteration of the while loop, \(pSlow\) points to the \(i\)-th element in the list and \(pFast\) points to the \(2i\)-th element
- **Initialization**: True when \(i = 0\) since both pointers are at the head
- **Maintenance**: if \(pSlow, pFast\) are at positions \(i\) and \(2i\) respectively before \(i\)-th iteration, they will be at positions \(i + 1, 2(i + 1)\) respectively before the \(i + 1\)-st iteration
- **Termination**: When the loop terminates, \(pFast\) is at element \(n - 1\). Then by the loop invariant, \(pSlow\) is at element \((n - 1)/2\). Thus \(pSlow\) points to the middle of the list

Example Algorithm

```c
GetMiddle (List l){
  pSlow = pFast = l;
  while ((pFast->next)&&(pFast->next->next)){
    pFast = pFast->next->next
    pSlow = pSlow->next
  }
  return pSlow
}
```

Challenge

- Figure out how to use a similar idea to determine if there is a loop in a linked list without marking nodes!

Todo

- Read Chapter 4 (Recurrences) in text