Today’s Outline

- Review of Asymptotic Notation
- Proofs of Correctness
- Intro to Recurrence Relations

Asymptotic Rule of Thumb

- Let $f(n)$, $g(n)$ be two functions of n
- Let $f_1(n)$, be the fastest growing term of $f(n)$, stripped of its coefficient.
- Let $g_1(n)$, be the fastest growing term of $g(n)$, stripped of its coefficient.

Then we can say:

- If $f_1(n) \geq g_1(n)$ then $f(n) = \Theta(g(n))$
- If $f_1(n) \leq g_1(n)$ then $f(n) = \Omega(g(n))$
- If $f_1(n) = g_1(n)$ then $f(n) = \Theta(g(n))$
- If $f_1(n) < g_1(n)$ then $f(n) = o(g(n))$
- If $f_1(n) > g_1(n)$ then $f(n) = \omega(g(n))$

Examples

The following are all true statements:

- From last lecture, $\sum_{i=1}^{n} i^2$ is $O(n^3)$, $\Omega(n^3)$ and $\Theta(n^3)$
- $\log n$ is $o(\sqrt{n})$
- $\log n$ is $o(\log^2 n)$
- $10,000n^2 + 25n$ is $\Theta(n^2)$

Proofs of Correctness

- Last time, we saw how to use a loop invariant to prove the correctness of an alg to find the middle element in a list
- Today we’ll look at proof of correctness for Insertion Sort
- We’ll also look at a more complicated proof for a MaxSeq algorithm

Loop Invariants

A useful tool for proofs of correctness is loop invariants. Three things must be shown about a loop invariant:

- **Initialization:** Invariant is true before first iteration of loop
- **Maintenance:** If invariant is true before iteration i, it is also true before iteration $i + 1$ (for any i)
- **Termination:** When the loop terminates, the invariant gives a property which can be used to show the algorithm is correct
We’ll prove the correctness of a simple algorithm which solves the following interview question:

- **Find the middle of a linked list, while only going through the list once**
- The basic idea is to keep two pointers into the list, one of the pointers moves twice as fast as the other.
- (Call the head of the list the 0-th elem, and the tail of the list the \((n - 1)\)-st element, assume that \(n - 1\) is an even number)

```c
GetMiddle (List l){
    pSlow = pFast = l;
    while ((pFast->next)&&(pFast->next->next)){
        pFast = pFast->next->next
        pSlow = pSlow->next
    }
    return pSlow
}
```

Example Loop Invariant

- **Invariant:** At the start of the \(i\)-th iteration of the while loop, \(pSlow\) points to the \(i\)-th element in the list and \(pFast\) points to the \(2i\)-th element.
- **Initialization:** True when \(i = 0\) since both pointers are at the head.
- **Maintenance:** If \(pSlow\), \(pFast\) are at positions \(i\) and \(2i\) respectively before \(i\)-th iteration, they will be at positions \(i+1\), \(2(i + 1)\) respectively before the \(i + 1\)-st iteration.
- **Termination:** When the loop terminates, \(pFast\) is at element \(n - 1\). Then by the loop invariant, \(pSlow\) is at element \((n - 1)/2\). Thus \(pSlow\) points to the middle of the list.

Another example

- The Problem: we want to sort an array, \(A\), of integers in non-decreasing order.
- E.g. if \(A\) is 3, 2, 2, 1, 5 at the start, we want it to be 1, 2, 2, 3, 5 at the end.
- Insertion-sort is one way to do this.

```c
Insertion-Sort (A, int n)
for (j=1;j<n;j++){
    key = A[j];
    //Insert A[j] into the sorted sequence A[0,...,j-1],
    //in the location such that it is as large as all elems
    //to the left of it
    i = j-1
    while (i>=0 and A[i] > key){
        A[i+1] = A[i]
        i--
    }
    A[i+1]= key
}
```

Example Algorithm

Insertion Sort

Run Time of Insertion-Sort

- We can easily calculate the worst case run time of insertion sort.
- The outer “for” loop runs from \(j = 1\) to \(j = n - 1\), in the worst case, the inner “while” loop runs from \(i = j - 1\) to 0.
- This gives us the following sum:

\[
\sum_{j=1}^{n} \sum_{i=j-1}^{0} 1 = \sum_{j=1}^{n} j = \frac{(n + 1)n}{2} = O(n^2)
\]
Loop Invariant

- Insertion sort has a more complicated loop invariant:
- **Invariant:** At the start of each iteration of the for loop, the array \(A[0, \ldots, j - 1]\) consists of the elements of the original \(A[0, \ldots, j - 1]\), except that they are in sorted order
- How do we use this loop invariant to prove correctness?

In Class Exercise

- **Invariant:** At the start of each iteration of the for loop, the array \(A[0, \ldots, j - 1]\) consists of the elements of the original \(A[0, \ldots, j - 1]\), except that they are in sorted order
- Establish the following properties for this invariant:
 - Initialization: Establish at time just after first assignment to \(j\) (i.e. for \(j = 1\), but before the loop has been entered)
 - Maintenance: Assuming the inner loop does what the comment says, show maintenance for the outer loop invariant
 - Termination: Show that \(A\) is sorted at termination

Another Example

- Proofs of correctness are not always easy
- Question from before: Design an algorithm to return the largest sum of contiguous integers in an array of ints
- Example: if the input is \((-10, 2, 3, -2, 0, 5, -15)\), the largest sum is 8, which we get from \((2, 3, -2, 0, 5)\).

Our Last Algorithm

MaxSeq2 (int arr[], int n)

```java
int max = 0;
for (int i = 1; i <= n; i++)
    int sum = 0;
    for (int j = i; j <= n; j++)
        sum += arr[j];
    if (sum > max)
        max = sum; // and store i and j if desired
return max;
```
takes \(O(n^2)\) time.

A New Algorithm

MaxSeq3 (int arr[], int n)

```java
int arrLeft[] = new int[n];
arrLeft[0] = arr[0];
for (int i = 1; i < n; i++){
    arrLeft[i] = max (arr[i], arrLeft[i-1] + arr[i]);
}
int arrRight[] = new int[n];
arrRight[n-1] = arr[n-1];
for (int i = n-2; i >= 0; i--){
    arrRight[i] = max (arr[i], arrRight[i+1] + arr[i]);
}

// now compute the maximum subsequence using
// arrLeft and arrRight
```

```java
int arrMax[] = new int[n];
arrMax[0] = arrRight[0];
arrMax[n-1] = arrLeft[n-1];
for (int i = 1; i < n-1; i++){
    int sum = arrLeft[i] + arrRight[i] - arr[i];
    arrMax[i] = sum;
}
return the maximum element in the array arrMax or 0, whichever is larger;
```
Example

<table>
<thead>
<tr>
<th>arr</th>
<th>-10</th>
<th>2</th>
<th>3</th>
<th>-2</th>
<th>0</th>
<th>5</th>
<th>-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrLeft</td>
<td>-10</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>-7</td>
</tr>
<tr>
<td>arrRight</td>
<td>-2</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>-15</td>
</tr>
<tr>
<td>arrMax</td>
<td>-2</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>-7</td>
</tr>
</tbody>
</table>

MaxSeq3

Loop1 Invariant

- **Loop 1 Invariant**: At the start of the \(i\)-th iteration, for all \(j < i\), arrLeft[\(j\)] gives the largest value of any subsequence whose rightmost term is arr[\(j\)].
- **Initialization**: When \(i = 1\), arrLeft[0] = arr[0], which is the largest value of any subsequence whose rightmost term is arr[0].
- **Maintenance**: Assume the invariant is true before iteration \(i\). This means arrLeft[\(i-1\)] gives the value of the largest subsequence whose rightmost term is arrLeft[\(i-1\)].

To show arrLeft[i] is indeed the maximal value, we need only show that that \(v(l_i) \leq v(l_{i-1})\). There are two cases.
Case 1 is that \(l_i\) includes only the term arr[i]. In this case, \(v(l_i) \leq v(l_{i-1})\).
Case 2 is that \(l_i\) extends left beyond arr[i]. Let \(l_{i-1}\) be the part of \(l_i\) that does not contain arr[i]. Then \(v(l_i) = v(l_{i-1}) + v(arr[i])\). But \(v(l_{i-1}) \leq v(arrLeft[i-1])\), by the inductive hypothesis. Hence the value arrLeft[i] does in fact give the largest value of any subsequence whose rightmost term is arr[i], so by the inductive hypothesis, the loop invariant holds after iteration \(i\).
- **Termination**: When the loop terminates, for all values of \(0 \leq j < n\), arrLeft[\(j\)] gives the largest value of any subsequence whose rightmost term is arr[\(j\)].

Loop2 Invariant

- **Loop 2 Invariant**: At the start of the \(i\)-th iteration, arrRight[\(j\)] gives the value of the largest subsequence ending at position \(j\), for all \(j < i\).
- **Initialization**, **Maintenance**, and **Termination** proofs are similar to Loop 1 invariant
- Good at home exercise to see if you can prove these facts for loop2

Loop3 Invariant

- **Loop 3 Invariant**: At the start of the \(i\)-th iteration, for all \(j < i\), arrMax[\(j\)] gives the value of the best subsequence which includes value arr[\(j\)].
- We can assume the termination conditions of the loop1 and loop2 invariants hold during loop3.
- **Initialization**: When \(i = 1\), arrMax[0] = arrRight[0]. We’ve shown that arrRight[0] is the best value of any subsequence whose leftmost value is arr[0]. Any subsequence containing arr[0] will have arr[0] as the leftmost element. Hence arrMax[0] is in fact the value of the best subsequence containing arr[0].
- **Maintenance**: Assume the invariant is true before iteration \(i\). Note that at the end of the iteration, arrMax[i] = arrLeft[i] + arrRight[i] - arr[i]. We first note that there exists a subsequence \(s_{i,k}\) which achieves this value arrMax[i]. It’s just the subsequence consisting
of the subsequence which achieves the value \(\text{arrLeft}[i] \) concatenated with the subsequence which achieves the value \(\text{arrRight}[i] \).

Now consider some arbitrary subsequence, \(s_i \), which contains \(\text{arr}[i] \). To show \(\text{arrMax}[i] \) is indeed the maximal value, we need only show that \(v(s_i) \leq \text{arrMax}[i] \). Let \(l_i \) be the subsequence of \(s_i \) which includes \(\text{arr}[i] \) and all elems to the left of \(\text{arr}[i] \). Similarly, let \(r_i \) be the subsequence of \(s_i \) which includes \(\text{arr}[i] \) and all elems to the right of \(\text{arr}[i] \). Note that

\[
- v(l_i) \leq \text{arrLeft}[i] \\
- v(r_i) \leq \text{arrRight}[i]
\]

Hence \(v(s_i) = v(l_i) + v(r_i) - \text{arr}[i] \leq \text{arrLeft}[i] + \text{arrRight}[i] - \text{arr}[i] = \text{arrMax}[i] \). And so \(\text{arrMax}[i] \) does in fact give the value of the best subsequence which includes value \(\text{arr}[i] \).

Thus, the loop invariant remains true at the beginning of iteration \(i + 1 \).

Termination: When the loop terminates, for all \(1 < j < n - 1 \), \(\text{arrMax}[j] \) gives the value of the best subsequence which includes value \(\text{arr}[j] \). We further note that \(\text{arrMax}[n-1] \) gives the value of the best subsequence containing \(\text{arr}[n-1] \), since \(\text{arrMax}[n-1] = \text{arrLeft}[n-1] \), and any subsequence containing \(\text{arr}[n-1] \) will have \(\text{arr}[n-1] \) as the rightmost element.

The best subsequence in the array \(\text{arr} \) must contain some element in the array or be the empty subsequence. If it’s not the empty subsequence, the value of it is stored somewhere in \(\text{arrMax} \). Thus the return value of \(\text{MaxSeq3} \) is the value of the best possible subsequence.

Take away

- We needed 3 loop invariants for \(\text{MaxSeq3} \)
- \(\text{MaxSeq3} \) was much harder to show correct, but it runs much faster than our other algorithms
- I don’t expect you to be able to do proofs like the one for \(\text{MaxSeq3} \), especially not from scratch
- However, you should be able to understand it!
- I do expect you to be able to do proofs of correctness like those for \(\text{GetMiddle} \) and \(\text{Insertion-Sort} \).