Today's Outline

- Tons 'o Loop Invariants
- MaxSeq Algorithm
- Sorting?

Loop Invariants

- **Initialization**: Invariant is true before first iteration of loop
- **Maintenance**: If invariant is true before iteration i, it is also true before iteration $i+1$ (for any i)
- **Termination**: When the loop terminates, the invariant gives a property which can be used to show the algorithm is correct

Sum

```java
//PRE: res is the sum of the elements in arrIn
//POST: res is the sum of the elements in arrIn
Sum(int arrIn[], int n)
{
    int sum = arrIn[0];
    for (int i=1; i<n; i++){
        sum += arrIn[i];
    }
    return sum;
}
```

Sum Invariant

Invariant: At the start of the i-th iteration of the for loop, sum is the summation of $arr[0]$ through $arr[i-1]$.

- **Initialization**: When $i=1$, sum = $arr[0]$, which establishes the invariant
- **Maintenance**: Assume at the start of the i-th iteration that sum is the summation of $arr[0]$ through $arr[i-1]$. Then at start of the $i+1$ iteration, sum is the summation of $arr[0]$ through $arr[i-1]$ plus $arr[i]$. Thus, sum is the summation of $arr[0]$ through $arr[i]$.
- **Termination**: When the loop terminates, sum is the summation of $arr[0]$ through $arr[n-1]$, which is the sum of the entire array.

Reverse

```java
//PRE: n is the size of arrIn
//POST: arrRes is the reverse of arrIn
Reverse(int arrIn[], int n)
{
    int arrRes[] = new int[n];
    for (int i=0; i<n; i++){
        arrRes[i] = arrIn[(n-1)-i];
    }
    return arrRes;
}
```
Reverse Invariant

Loop Invariant: At the start of the i-th iteration of the for loop, for all $0 \leq j < i$, $arrRes[j] = arrIn[(n-1)-j]$

- **Initialization:** When $i=0$, there is no j such that $0 \leq j < i$, so the invariant is trivially true
- **Maintenance:** (Assume at the start of the i-th iteration of the for loop, for all $0 \leq j < i$, $arrRes[j] = arrIn[(n-1)-j]$.
 Show that at the start of the $i+1$ iteration of the for loop, for all $0 \leq j < i+1$, $arrRes[j] = arrIn[(n-1)-(i+1)]$). At the end of the $i+1$ iteration, we know that $arrRes[i+1] = arrIn[(n-1)-(i+1)]$. This fact, along with the assumption that the invariant holds at the start of the i-th iteration implies that for all $0 \leq j < i+1$, $arrRes[j] = arrIn[(n-1)-j]$
- **Termination:** When the loop terminates, we know that: for all $0 \leq i < n$, $arrRes[i] = arrIn[(n-1)-i]$. This implies that $arrRes$ is the reverse of $arrIn$.

Max

//PRE: n is the size of $arrIn$
//POST: res is the max element in $arrIn$
Max(int arrIn[], int n)
 int max = arrRes[0]
 for (int i=1;i<n;i++)
 if (arrIn[i] > max)
 max = arrIn[i];
 return max;

In Class Exercise

Prove that the algorithm Max is correct.

- Give a good loop invariant
- Show the Initialization, Maintenance and Termination conditions for that loop invariant.

MaxSeq

- Proofs of correctness can be very challenging
- Question from before: Design an algorithm to return the largest sum of contiguous integers in an array of ints
- Example: if the input is $(-10, 2, 3, -2, 0, 5, -15)$, the largest sum is 8, which we get from $(2, 3, -2, 0, 5)$.

Our Last Algorithm

MaxSeq2 (int arr[], int n)
 int max = 0;
 for (int i = 1;i<n;i++)
 int sum = 0;
 for (int j=i;j<n;j++)
 sum += arr[j];
 if (sum > max)
 max = sum; //and store i and j if desired
 return max;

takes $O(n^2)$ time.

A New Algorithm

MaxSeq3 (int arr[], int n){
 int arrLeft[] = new int[n];
 arrLeft[0] = arr[0];
 for (int i=1;i<n;i++)
 arrLeft[i] = max (arr[i], arrLeft[i-1] + arr[i]);
}

 int arrRight[] = new int[n];
 arrRight[n-1] = arr[n-1];
 for (int i=n-2;i>=0;i--){
 arrRight[i] = max (arr[i], arrRight[i+1] + arr[i]);
 }

 //now compute the maximum subsequence using
 //arrLeft and arrRight
```java
int arrMax[] = new int[n];
arrMax[0] = arrRight[0];
arrMax[n-1] = arrLeft[n-1];
for (int i=1;i<n-1;i++)
    int sum = arrLeft[i] + arrRight[i] - arr[i];
    arrMax[i] = sum;
return the maximum element in the array arrMax or 0,
whichever is larger;
}
```

Example

```
arr -10 2 3 -2 0 5 -15
arrLeft -10 2 5 3 3 8 -7
arrRight -2 8 6 3 5 5 -15
arrMax -2 8 8 8 8 -7
```

Loop 1 Invariant

- **Loop 1 Invariant:** At the start of the i-th iteration, for all
 \(0 \leq j < i\), arrLeft[j] gives the largest value of any subsequence
 whose rightmost term is arr[j].
- **Initialization:** When \(i = 1\), arrLeft[0] = arr[0], which is the
 largest value of any subsequence whose rightmost term is
 arr[0].
- **Maintenance:** Assume the invariant is true before iteration
 \(i\). This means arrLeft[i-1] gives the value of the largest sub-
 sequence whose rightmost term is arrLeft[i-1].
 Note that at the end of the iteration, arrLeft[i] = max (arr[i],
 arrLeft[i-1] + arr[i]). Further note that there exists a subse-
 quence, \(l_i\) which terminates at arr[i] and obtains this value.
 It’s either the subsequence consisting of just arr[i], or the
 subsequence with term arr[i] concatenated with the subse-
 quence associated with the value arrLeft[i-1].
 Now consider some arbitrary subsequence, \(l_i\) which has right-
 most term arr[i]. Let \(v(l_i)\) be the value of this subsequence.

To show arrLeft[i] is indeed the maximal value, we need only show that that
\(v(l_i) \leq arrLeft[i]\). There are two cases.
Case 1 is that \(l_i\) includes only the term arr[i]. In this case,
\(v(l_i) \leq arr[i] \leq arrLeft[i]\).
Case 2 is that \(l_i\) extends left beyond arr[i]. Let \(l_{i-1}\) be the
part of \(l_i\) that does not contain arr[i]. Then \(v(l_i) = v(l_{i-1}) +
arr[i]\). But \(v(l_{i-1}) \leq arrLeft[i-1]\), by the inductive hypothesis.
Thus \(v(l_i) \leq v arrLeft[i-1] + arr[i] \leq arrLeft[i]\).
Hence the value arrLeft[i] does in fact give the largest value of any subsequence whose rightmost term is arr[i], so by the
inductive hypothesis, the loop invariant holds after iteration
\(i\).
- **Termination:** When the loop terminates, for all values of
 \(0 \leq j < n\), arrLeft[j] gives the largest value of any subse-
 quence whose rightmost term is arr[j].

Loop 2 Invariant

- **Loop 2 Invariant:** At the start of the i-th iteration, arrRight[j]
 gives the value of the largest subsequence whose leftmost
 term is arr[j], for all \(n > j > i\).
- **Initialization, Maintenance, and Termination** proofs are
 similar to Loop 1 invariant.
- Good at home exercise to see if you can prove these facts
 for loop2.
Loop3 Invariant

- **Loop 3 Invariant:** At the start of the i-th iteration, for all \(j < i \), arrMax[j] gives the value of the best subsequence which includes value arr[j].
- We can assume the termination conditions of the loop1 and loop2 invariants hold during loop3.
- **Initialization:** When \(i = 1 \), arrMax[0] = arrRight[0]. We’ve shown that arrRight[0] is the best value of any subsequence whose leftmost value is arr[0]. Any subsequence containing arr[0] will have arr[0] as the leftmost element. Hence arrMax[0] is in fact the value of the best subsequence containing arr[0].
- **Maintenance:** Assume the invariant is true before iteration \(i \). Note that at the end of the iteration, arrMax[i] = arrLeft[i] + arrRight[i] - arr[i].

We first note that there exists a subsequence \(s_i \) which achieves this value arrMax[i]. It’s just the subsequence consisting of the subsequence which achieves the value arrLeft[i] concatenated with the subsequence which achieves the value arrRight[i].

Now consider some arbitrary subsequence, \(s_i \), which contains arr[i]. To show arrMax[i] is indeed the maximal value, we need only show that \(v(s) \leq arrMax[i] \). Let \(l_i \) be the subsequence of \(s_i \) which includes arr[i] and all elements to the left of arr[i]. Similarly, let \(r_i \) be the subsequence of \(s_i \) which includes arr[i] and all elements to the right of arr[i]. Note that

- \(v(l_i) \leq arrLeft[i] \)
- \(v(r_i) \leq arrRight[i] \)

Hence \(v(s_i) = v(l_i) + v(r_i) - arr[i] \leq arrLeft[i] + arrRight[i] - arr[i] = arrMax[i] \). And so arrMax[i] does in fact give the value of the best subsequence which includes value arr[i].

Thus, the loop invariant remains true at the beginning of iteration \(i+1 \).

Take away

- We needed 3 loop invariants for MaxSeq3
- MaxSeq3 was much harder to show correct, but it runs much faster than our other algorithms
- I don’t expect you to be able to do the entire proof for MaxSeq3, especially not from scratch
- However, you should be able to understand and do something similar to the individual loop invariant proofs
- Also, you should be able to understand the entire proof!

The Sorting Problem

- The Problem: we want to sort an array, \(A \), of integers in non-decreasing order
- E.g. if \(A \) is 3, 2, 2, 1, 5 at the start, we want it to be 1, 2, 2, 3, 5 at the end
- Sorting is a very common programming problem!
- Last time, we analyzed the Insertion-Sort Algorithm

Insertion Sort

Insertion-Sort (A, int n)

```c
for (j=1;j<n;j++){
    key = A[j];
    //Insert A[j] into the sorted sequence A[0,...,j-1],
    //in the location such that it is as large as all elems
    //to the left of it
    i = j-1
    while (i>=0 and A[i] > key){
        A[i+1] = A[i]
        i--
    }
    A[i+1] = key
}
```

Notes:

- The Sorting Problem is a common programming problem.
- Insertion Sort is an efficient sorting algorithm.
- It works by iterating through the array and inserting each element into its correct position in a sorted subarray.
- The algorithm has a time complexity of \(O(n^2) \), making it inefficient for large datasets.
Analysis

- Best case run time of Insertion Sort is $O(n)$ (if the array is already sorted)
- However, we proved last time that the run time of Insertion Sort is $\Theta(n^2)$ in the worst case
- Q: Can we do better than this?
- A: Yes, we can use a recursive algorithm called Merge Sort

Merge Sort

High Level Idea:

- Split the array into two parts of the same size, A_1 and A_2
- Recursively sort A_1 and A_2
- Merge A_1 and A_2 together into one big sorted array

Merge

//PRE: arrLeft and arrRight are in sorted order
//POST: arrRes contains the elements of arrLeft and arrRight in sorted order
Merge(int arrLeft[], int arrRight[])
 iLeft = iRight = 0;
 int arrRes[] = new int[arrLeft.size()+ arrRight.size()];
 for (int i=0;i<arrRes.size();i++)
 if (iRight == arrRight.size () ||
 (iLeft<arrLeft.size() && arrLeft[iLeft]<=arrRight[iRight])){
 arrRes[i] = arrLeft[iLeft];
 iLeft++;
 }else{
 arrRes[i] = arrRight[iRight];
 iRight++;
 }
 return arrRes;
}

Todo

- Read Chapter 4 (Recurrences) in text