Max Seq Problem

Question from before: Design an algorithm to return the largest sum of contiguous integers in an array of ints

Example: if the input is (-10, 2, 3, -2, 0, 5, -15), the largest sum is 8, which we get from (2, 3, -2, 0, 5).

Example

arr: -10 2 3 -2 0 5 -15
arrVal: 0 2 5 3 3 8 0
maxVal: 0 2 5 5 5 8 8

A New Algorithm

MaxSeq (int arr[], int n)

```
MaxSeq (int arr[], int n)
{
  int arrVal[] = new int[n];
  List arrMaxSubseq[] = new List[n];

  if (arr[0]>0)
  {
    arrVal[0] = arr[0];
    arrMaxSubseq[0] = {arr[0]};
  }
  else{
    arrVal[0] = 0;
    arrMaxSubseq[0] = { };
  }
  int maxVal = arrVal[0];
  List maxSubseq = arrMaxSubseq[0];
  for (int i=1;i<n;i++){
    int bestVal = arrVal[i-1] + arr[i];
    if (bestVal > 0){
      arrVal[i] = bestVal;
      arrMaxSubseq[i] = {arrMaxSubseq[i-1], arr[i]};
    }else{
      arrVal[i] = 0;
      arrMaxSubseq[i] = { };
    }
    if (arrVal[i] > maxVal){
      maxVal = arrVal[i];
      maxSubseq = arrMaxSubseq[i];
    }
  }
  return maxVal as the maximum value,
        and maxSubseq as the maximum subsequence
}
```
Loop Invariant

At the beginning of the i-th iteration of the for loop, the following is true:

- For all $0 \leq j < i$, $\text{arrVal}[j]$ gives the value of the maximum value subsequence with rightmost index j, and $\text{arrMaxSubseq}[j]$ gives a subsequence with rightmost index j that has value $\text{arrVal}[j]$.
- The variable maxVal gives the value of the maximum subsequence with rightmost index less than i, and maxSubseq gives a subsequence with rightmost index less than i that has value maxVal.

Loop1 Invariant

- **Initialization**: Before the 1-st iteration of the loop, $\text{arrVal}[0]$ gives the value of the maximum value subsequence with rightmost index 0, and $\text{arrMaxSubseq}[0]$ gives a subsequence with rightmost index at 0 that has value $\text{arrVal}[0]$. Further maxVal gives the value of the maximum value subsequence with rightmost index less than 1, and maxSubseq is a subsequence achieving this value.
- **Maintenance**: See next slide
- **Termination**: When $i = n$, the second part of the loop invariant says that maxVal is the maximum of all possible subsequences in the array arr (i.e. with rightmost index less than n), and that maxSubseq gives a subsequence which achieves this value. These facts directly imply that the algorithm is correct.

Maintenance Sketch

We sketch only the first part of the maintenance proof.

- Since $\text{arrVal}[i-1]$ gives the best value of a subsequence with rightmost index $i - 1$ (by inductive hypothesis), the variable bestVal gives the best value of a subsequence that includes $\text{arr}[i]$. If this value is greater than 0, then the value of the maximum value subsequence with rightmost index at i is bestVal. Otherwise, the value of the maximum value subsequence with rightmost index at i is 0.
- Thus $\text{arrVal}[i]$ is set correctly in the loop
- Must also show that $\text{arrMaxSubseq}[i]$, maxVal and maxSubseq are set correctly
- This is left as an exercise.

The Sorting Problem

- The Problem: we want to sort an array, \mathcal{A}, of integers in non-decreasing order
- E.g. if \mathcal{A} is 3, 2, 2, 1, 5 at the start, we want it to be 1, 2, 2, 3, 5 at the end
- Sorting is a very common programming problem!
- Last time, we analyzed the Insertion-Sort Algorithm

Insertion Sort

```python
Insertion-Sort (A, int n)
for (j=1; j<n; j++){
    key = A[j];
    //Insert A[j] into the sorted sequence A[0,...,j-1],
    //in the location such that it is as large as all elems
    //to the left of it
    i = j-1
    while (i>=0 and A[i] > key){
        A[i+1] = A[i]
        i--
    }
    A[i+1] = key
}
```

Analysis

- Best case run time of Insertion Sort is $O(n)$ (if the array is already sorted)
- However, we proved before that the run time of Insertion Sort is $\Theta(n^2)$ in the worst case
- Q: Can we do better than this?
- A: Yes, we can use a recursive algorithm called Merge Sort
Merge Sort

High Level Idea:

- Split the array into two parts of the same size, A_1 and A_2
- Recursively sort A_1 and A_2
- Merge A_1 and A_2 together into one big sorted array

Merge Sort Example

```
arr 1 4 5 2 3 6
arrLeft 1 4 5
arrRight 2 3 6
arrRes 1 2 3 4 5 6
```

Sketch of Correctness Proof

- Assume the subroutine Merge does what it says (proof of this is given on page 30 of book)
- We can then prove by induction on the size of A, that Merge-Sort works
- Base case: if A.size() = 1, A is already in sorted order, so the algorithm returns the correct value.

Merge

```java
//PRE: arrLeft and arrRight are in sorted order
//POST: arrRes contains the elems of arrLeft and arrRight in sorted order
Merge(int arrLeft[], int arrRight[])
    int iLeft = 0, iRight = 0;
    int arrRes[] = new int[arrLeft.size()+arrRight.size()];
    for (int i=0;i<arrRes.size();i++){
        if (iRight == arrRight.size() || (iLeft<arrLeft.size() && arrLeft[iLeft]<=arrRight[iRight])){
            arrRes[i] = arrLeft[iLeft];
            iLeft++;
        }else{
            arrRes[i] = arrRight[iRight];
            iRight++;
        }
    }
    return arrRes;
}
```
Let’s analyze the worst case run time of Merge-Sort.
First need to analyze run time of the Merge subroutine.
Let $n = \text{arrLeft.size()} + \text{arrRight.size()}$.
Then the for loop has n iterations, each taking $\Theta(1)$ time.
Thus, total time Merge takes is $\Theta(n)$.

Let $T(n)$ be the number of time steps Merge-Sort takes on an array of size n.
Total cost is 2 calls to Merge-Sort on arrays of size $\leq n/2$, one call to Merge which takes time $\Theta(n)$, plus $\Theta(n)$ time to split the array, plus $\Theta(1)$ time for assignments.
Thus, if $n = 1$, $T(n) = \Theta(1)$, and if $T(n) = 2 \times T(n/2) + \Theta(n)$.

The running time of an algorithm on a constant size input is always $\Theta(1)$.
Thus for convenience, we usually omit statements of the boundary conditions and just assume $T(n)$ is constant when n is a constant.
Example: Instead of saying "If $n = 1$, $T(n) = \Theta(1)$, and if $T(n) = 2 \times T(n/2) + \Theta(n)$", we just say "$T(n) = 2 \times T(n/2) + \Theta(n)$".

"Oh how should I not lust after eternity and after the nuptial ring of rings, the ring of recurrence" - Friedrich Nietzsche, Thus Spoke Zarathustra

$T(n) = 2 \times T(n/2) + n$ is an example of a recurrence relation.
A Recurrence Relation is any equation for a function T, where T appears on both the left and right sides of the equation.
We always want to “solve” these recurrence relation by getting an equation for T, where T appears on just the left side of the equation.

We’ve found a function giving the run time of Merge-Sort.
But what does this mean: $f(n) = 2 \times T(n/2) + \Theta(n)$?
How can we write this in big-O or Θ notation?
How does this algorithm compare with the $O(n^2)$ run time of insertion sort?

Whenever we analyze the run time of a recursive algorithm, we will first get a recurrence relation.
To get the real run time, we need to solve the recurrence relation.
Substitution Method

- One way to solve recurrences is the substitution method aka “guess and check”
- What we do is make a good guess for the solution to $T(n)$, and then try to prove this is the solution by induction

Example

- Let’s guess that the solution to $T(n) = 2 \cdot T(n/2) + n$ is $T(n) = O(n \log n)$
- In other words, $T(n) \leq cn \log n$ for appropriate choice of constant c
- We can prove that $T(n) \leq cn \log n$ is true by plugging back into the recurrence

Proof

- We prove this by induction, Assume that $T(n/2) \leq cn/2 \log(n/2)$

\[
T(n) \leq 2T(n/2) + n \leq 2(cn/2 \log(n/2)) + n \leq cn \log(n/2) + n = cn(\log n - \log 2) + n = cn \log n - cn + n \leq cn \log n
\]

last step holds if $c \geq 1$

Recurrence Relations

- There are many ways to solve recurrence relations
- Next time, we’ll see some other methods.