CS 361, Lecture 1

Jared Saia
University of New Mexico

Today’s Outline

- Administrative Info
- What is an Algorithm? Data Structure?
- Why study algorithms?
- Todo list for next class

Why study algorithms?

“Seven years of College down the toilet” - John Belushi in Animal House

- Q: Can I get a programming job without knowing something about algorithms and data structures?
- A: Yes, but do you really want to be programming GUIs your entire life?

Why study algorithms? (II)

- Almost all big companies want programmers with knowledge of algorithms: Microsoft, Google, Oracle, IBM, Yahoo, Sandia, Los Alamos, etc.
- In most programming job interviews, they will ask you several questions about algorithms and/or data structures
- Your knowledge of algorithms will set you apart from the large masses of interviewees who know only how to program
- If you want to start your own company, you should know that many startups are successful because they’ve found better algorithms for solving a problem (e.g. Google, Akamai, etc.)
Why Study Algorithms? (III)

- You’ll write better, faster code
- You’ll learn to think more abstractly and mathematically
- It’s the most challenging and interesting area of CS!

Solution

- Ideas on how to solve this problem?? What if we allowed multiple iterations?

A Real Job Interview Question

The following is a question commonly asked in job interviews in 2002 (thanks to Maksim Noy, see the career center link from the dept web page for the full compilation of questions):

- You are given an array with integers between 1 and 1,000,000.
- All integers between 1 and 1,000,000 are in the array at least once, and one of those integers is in the array twice
- Q: Can you determine which integer is in the array twice? Can you do it while iterating through the array only once?

Naive Algorithm

- Create a new array of ints between 1 and 1,000,000, which we’ll use to count the occurrences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen, update its count in the new array
- Go through the count array and see which number occurs twice.
- Return this number
Naive Algorithm Analysis

- Q: How long will this algorithm take?
- A: We iterate through the numbers 1 to 1,000,000 three times!
- Note that we also use up a lot of space with the extra array
- This is wasteful of time and space, particularly as the input array gets very large (e.g. it might be a huge data stream)
- Q: Can we do better?

A better Algorithm

- Iterate through the input array, summing up all the numbers, let S be this sum
- Let $x = S - (1,000,000 + 1)1,000,000/2$
- Return x

Ideas for a better Algorithm

- Note that $\sum_{i=1}^{n} i = (n + 1)n/2$
- Let S be the sum of the input array
- Let x be the value of the repeated number
- Then $S = (1,000,000 + 1)1,000,000/2 + x$
- Thus $x = S - (1,000,000 + 1)1,000,000/2$

Analysis

- This algorithm takes iterates through the input array just once
- It uses up essentially no extra space
- It is at least three times faster than the naive algorithm
- Further, if the input array is so large that it won’t fit in memory, this is the only algorithm which will work!
- These time and space bounds are the best possible
Designing good algorithms matters!
Not always this easy to improve an algorithm
However, with some thought and work, you can almost always get a better algorithm than the naive approach.

How to analyze an algorithm?
There are several resource bounds we could be concerned about: time, space, communication bandwidth, logic gates, etc.
However, we are usually most concerned about time
Recall that algorithms are independent of programming languages and machine types
Q: So how do we measure resource bounds of algorithms

Random-access machine model
We will use RAM model of computation in this class
All instructions operate in serial
All basic operations (e.g. add, multiply, compare, read, store, etc.) take unit time
All “atomic” data (chars, ints, doubles, pointers, etc.) take unit space

Worst Case Analysis
We’ll generally be pessimistic when we evaluate resource bounds
We’ll evaluate the run time of the algorithm on the worst possible input sequence
Amazingly, in most cases, we’ll still be able to get pretty good bounds
Justification: The “average case” is often about as bad as the worst case.
Example Analysis

- Consider the problem discussed last Tuesday about finding a redundant element in an array
- Let's consider the more general problem, where the numbers are 1 to \(n \) instead of 1 to 1,000,000

Algorithm 1

- Create a new "count" array of ints of size \(n \), which we'll use to count the occurrences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen, update its count in the "count" array
- As soon as a number is seen in the input array which has already been counted once, return this number

Algorithm 2

- Iterate through the input array, summing up all the numbers, let \(S \) be this sum
- Let \(x = S - (n + 1)n/2 \)
- Return \(x \)

Example Analysis: Time

- Worst case: Algorithm 1 does \(5 \times n \) operations (\(n \) inits to 0 in "count" array, \(n \) reads of input array, \(n \) reads of "count" array (to see if value is 1), \(n \) increments, and \(n \) stores into count array)
- Worst case: Algorithm 2 does \(2 \times n + 4 \) operations (\(n \) reads of input array, \(n \) additions to value \(S \), 4 computations to determine \(x \) given \(S \))
Example Analysis: Space

- Worst Case: Algorithm 1 uses n additional units of space to store the “count” array
- Worst Case: Algorithm 2 uses 2 additional units of space

Asymptotic analysis?

- A tool for analyzing time and space usage of algorithms
- Assumes input size is a variable, say n, and gives time and space bounds as a function of n
- Ignores multiplicative and additive constants
- Concerned only with the rate of growth
- E.g. Treats run times of n, $10,000 \times n + 2000$, and $.5n + 2$ all the same (We use the term $O(n)$ to refer to all of them)

A Simpler Analysis

- Analysis above can be tedious for more complicated algorithms
- In many cases, we don’t care about constants. $5n$ is about the same as $2n + 4$ which is about the same as $an + b$ for any constants a and b
- However we do still care about the difference in space: n is very different from 2
- Asymptotic analysis is the solution to removing the tedium but ensuring good analysis

What is Asymptotic Analysis? (II)

- Informally, O notation is the leading (i.e. quickest growing) term of a formula with the coefficient stripped off
- O is sort of a relaxed version of “\leq”
- E.g. n is $O(n)$ and n is also $O(n^2)$
- By convention, we use the smallest possible O value i.e. we say n is $O(n)$ rather than n is $O(n^2)$
More Examples

- E.g. n, $10,000n - 2000$, and $.5n + 2$ are all $O(n)$
- $n + \log n$, $n - \sqrt{n}$ are $O(n)$
- $n^2 + n + \log n$, $10n^2 + n - \sqrt{n}$ are $O(n^2)$
- $n \log n + 10n$ is $O(n \log n)$
- $10 + \log^2 n$ is $O(\log^2 n)$
- $n\sqrt{n} + n \log n + 10n$ is $O(n\sqrt{n})$
- $10,000$, 2^{50} and 4 are $O(1)$

Formal Defn of Big-O

- A function $f(n)$ is $O(g(n))$ if there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$

More Examples

- Algorithm 1 and 2 both take time $O(n)$
- Algorithm 1 uses $O(n)$ extra space
- But, Algorithm 2 uses $O(1)$ extra space

Example

- Let's show that $f(n) = 10n + 100$ is $O(g(n))$ where $g(n) = n$
- We need to give constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$
- In other words, we need constants c and n_0 such that $10n + 100 \leq cn$ for all $n \geq n_0$
Example

- We can solve for appropriate constants:

\[10n + 100 \leq cn \]
\[10 + 100/n \leq c \]

(1)
(2)

- So if \(n > 1 \), then \(c \) should be greater than 110.
- In other words, for all \(n > 1 \), \(10n + 100 \leq 110n \)
- So \(10n + 100 \) is \(O(n) \)

Todo

- Work on pretest, due next Tuesday!
- Visit the class web page: www.cs.unm.edu/~saia/361/
- Sign up for the class mailing list (cs361)
- Read Chapter 1 in textbook

Questions

Express the following in \(O \) notation

- \(n^3/1000 - 100n^2 - 100n + 3 \)
- \(\log n + 100 \)
- \(10 \cdot \log^2 n + 100 \)
- \(\sum_{i=1}^{n} i \)