Questions from last time

Express the following in O notation

- $n^3/1000 - 100n^2 - 100n + 3$
- $\log n + 100$
- $10 \log^2 n + 100$
- $\sum_{i=1}^{n} i$

Today’s Outline

- Asymptotic Analysis

Computing big-O of an Algorithm

- Write down a formula, $f(n)$, which gives the number of elementary operations performed by the algorithm as a function of the input size, n
- Compute the big-O value for $f(n)$
An Example

Consider the following (silly) algorithm:

Alg 1 (int n)

For i=1 to n
 For j=1 to i
 print "hi"

An Example (II)

First we write down the formula \(f \) giving the number of basic operations the algorithm performs: \(f = \sum_{i=1}^{n} i = (n + 1)n/2 \)

Next we compute the big-O value for \(f \): \((n + 1)n/2 \) is \(O(n^2) \)

We can then say that Alg1 takes \(O(n^2) \) time. Or, for short, we just say Alg1 is \(O(n^2) \)

Examples from last class

Following are some formulas that represent the number of operations of some algorithm. Give the big-O notation for each.

- E.g. \(n \), \(10,000n - 2000 \), and \(.5n + 2 \) are all \(O(n) \)
- \(n + \log n \), \(n - \sqrt{n} \) are \(O(n) \)
- \(n^2 + n + \log n \), \(10n^2 + n - \sqrt{n} \) are \(O(n^2) \)
- \(n \log n + 10n \) is \(O(n \log n) \)
- \(10 \cdot \log^2 n \) is \(O(\log^2 n) \)
- \(n\sqrt{n} + n \log n + 10n \) is \(O(n\sqrt{n}) \)
- \(10,000, 2^{50} \) and \(4 \) are \(O(1) \)

Computing big-O of an Algorithm

Following is a shorter way to compute big-O for an algorithm:

<table>
<thead>
<tr>
<th>"Atomic operations"</th>
<th>Constant time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consecutive statements</td>
<td>Sum of times</td>
</tr>
<tr>
<td>Conditionals</td>
<td>Larger branch time plus test time</td>
</tr>
<tr>
<td>Loops</td>
<td>Sum of iterations</td>
</tr>
<tr>
<td>Function Calls</td>
<td>Time of function body</td>
</tr>
<tr>
<td>Recursive Functions</td>
<td>Solve Recurrence Relation</td>
</tr>
</tbody>
</table>
Alg: Linear Search

```c
bool LinearSearch (int arr[], int n, int key){
    for (int i=0; i<n; i++){
        if (arr[i]==key)
            return true;
    }
    return false;
}
```

Linear Search Analysis

- To analyze the linear search algorithm, we consider the worst case.
- The worst case occurs when the key is the very last element in the array.
- In this case, the algorithm takes $O(n)$ time.
- Thus we say that the run time of Linear Search is $O(n)$.
- (Note that the average time of Linear Search is also $O(n)$)

Alg: Binary Search

```c
bool BinarySearch (int arr[], int s, int e, int key){
    if (e-s<=0) return false;
    int mid = (e-s)/2;
    if (arr[key]==arr[mid]){
        return true;
    }else if (key < arr[mid]){
        return BinarySearch (arr, s, mid, key);
    }else{
        return BinarySearch (arr, mid, e, key)
    }
}
```

Binary Search Analysis

- Note that even in the worst case, the size of the array we search is being split in half in each call.
- Thus if x is the number of recursive calls, and n is the original size of the array, $n(1/2)^x = 1$ in the worst case.
- This implies that $2^x = n$.
- Taking log of both sides, we get $x = \log n$, which means that there are $\log n$ recursive calls in the worst case.
- Since each invocation of the function takes $O(1)$ time (minus the recursive calls), and the total number of invocations is at most $\log n$, the running time is $O(\log n)$.
Comparison

- Linear Search is $O(n)$ time
- Binary Search is $O(\log n)$ time
- Binary Search is a much faster algorithm, particularly for large input sizes

A digression on logs

It rolls down stairs alone or in pairs,
and over your neighbor’s dog,
it’s great for a snack or to put on your back,
it’s log, log, log!
- “The Log Song” from the Ren and Stimpy Show

- The log function shows up very frequently in algorithm analysis
- As computer scientists, when we use log, we’ll mean \log_2 (i.e. if no base is given, assume base 2)

Definition

- $\log_x y$ is by definition the value z such that $x^z = y$
- $x^{\log_x y} = y$ by definition

Examples

- $\log 1 = 0$
- $\log 2 = 1$
- $\log 32 = 5$
- $\log 2^k = k$

Note: $\log n$ is way, way smaller than n for large values of n
Examples

- $\log_3 9 = 2$
- $\log_5 125 = 3$
- $\log_4 16 = 2$
- $\log_{24} 24^{100} = 100$

Facts about logs

To prove both equations, raise both sides to the power of 2, and use facts about exponents

- Fact 1: $\log(xy) = \log x + \log y$
- Fact 2: $\log_a c = \frac{\log c}{\log a}$

Facts about exponents

Recall that:

- $(x^y)^z = x^{yz}$
- $x^y x^z = x^{y+z}$

From these, we can derive some facts about logs

Incredibly useful fact about logs

- Fact 3: $\log_c a = \log a / \log c$

To prove this, consider the equation $a = c^{\log_c a}$, take \log_2 of both sides, and use Fact 2.
Memorize these facts

- Fact 1: \(\log(xy) = \log x + \log y\)
- Fact 2: \(\log a^c = c \log a\)
- Fact 3: \(\log_c a = \frac{\log a}{\log c}\)

These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)

Logs and \(O\) notation

- Note that \(\log_8 n = \frac{\log n}{\log 8}\).
- Note that \(\log_{600} n^{200} = 200 \times \log n / \log 600\).
- Note that \(\log_{100000} 30n^2 = 2 \times \log n / \log 100000 + \log 30 / \log 100000\).
- Thus, \(\log_8 n\), \(\log_{600} n^{600}\), and \(\log_{100000} 30n^2\) are all \(O(\log n)\).
- In general, for any constants \(k_1\) and \(k_2\), \(\log_{k_1} n^{k_2} = k_2 \log n / \log k_1\), which is just \(O(\log n)\).

Important Note

- \(\log^2 n = (\log n)^2\)
- \(\log^2 n\) is \(O(\log^2 n)\), not \(O(\log n)\).
- This is true since \(\log^2 n\) grows asymptotically faster than \(\log n\).
- All log functions of form \(k_1 \log_{k_3} k_4 \times n^{k_5}\) for constants \(k_1, k_2, k_3, k_4\) and \(k_5\) are \(O(\log^{k_2} n)\).
In-Class Exercise

Simplify and give O notation for the following functions. In the big-O notation, write all logs base 2:

- $\log 10n^2$
- $\log_5(n/4)$
- $\log^2 n^4$
- $2\log_4 n$
- $\log \log \sqrt{n}$

Another Interview Question

- The Question: Design an algorithm to return the largest sum of contiguous integers in an array of ints
- Example: if the input is $(-10, 2, 3, -2, 0, 5, -15)$, the largest sum is 8, which we get from $(2, 3, -2, 0, 5)$.

Does big-O really matter?

Let $n = 100000$ and $\Delta t = 1\mu s$

<table>
<thead>
<tr>
<th>Function</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log n$</td>
<td>1.2×10^{-5}</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>3.2×10^{-4}</td>
</tr>
<tr>
<td>n</td>
<td>.1</td>
</tr>
<tr>
<td>$n \log n$</td>
<td>1.2</td>
</tr>
<tr>
<td>$n \sqrt{n}$</td>
<td>31.6</td>
</tr>
<tr>
<td>n^2</td>
<td>2.8 hours</td>
</tr>
<tr>
<td>n^3</td>
<td>31.7 years</td>
</tr>
<tr>
<td>2^n</td>
<td>> 1 century</td>
</tr>
</tbody>
</table>

(from Classic Data Structures in C++ by Timothy Budd)

A Naive Algorithm

MaxSeq1 (int arr[], int n)

```c
    int max = 0;
    for (int i = 0; i < n; i++)
        for (int j = i; j < n; j++)
            int sum = 0;
            for (int k = i; k <= j; k++)
                sum += arr[k];
            if (sum > max)
                max = sum;
    return max;
```
Analysis

- Need to count the total number of operations of MaxSeq1
- Might as well assume time to do the inner loop is 1 (since it’s a constant and therefore $O(1)$)
- Let $f(n)$ be the runtime for an array of size n

\[
f(n) = \sum_{i=1}^{n} \sum_{j=i}^{n} \sum_{k=i}^{j} 1 \\
= \sum_{i=1}^{n} \sum_{j=i}^{n} (j - i) \\
= \sum_{i=1}^{n} \sum_{j=1}^{n-i} j \\
= \sum_{i=1}^{n} ((n - i)/2)(n - i + 1)
\]

(1) (2) (3) (4)

Analysis (II)

\[
f(n) = \sum_{i=1}^{n} ((n - i)/2)(n - i + 1) \\
= \sum_{i=1}^{n-1} (i/2)(i + 1) \\
= 1/2 \sum_{i=1}^{n-1} (i^2 + i) \\
= 1/2 \left(\sum_{i=1}^{n-1} i^2 + \sum_{i=1}^{n-1} i \right) \\
= 1/2 \left(O(n^3) + O(n^2) \right) \\
= O(n^3)
\]

(5) (6) (7) (8) (9) (10)

Challenge

- MaxSeq1 is very slow
- This kind of algorithm won’t impress an interviewer
- Can you do better?

Todo

- Finish pretest, due next Tuesday!
- Sign up for the class mailing list (cs361)
- Read Chapter 3 (Growth of Functions) in textbook