CS 361, Lecture 22

Jared Saia
University of New Mexico

Outline

- Red Black Trees
- Other Balanced Trees

Red-Black Properties

A BST is a red-black tree if it satisfies the RB-Properties

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black
5. For each node, all paths from the node to descendant leaves contain the same number of black nodes

HW Questions

- Are there any questions on the current HW?
- Left-Rotate(x) takes a node x and "rotates" x with its right child.
- Right-Rotate is the symmetric operation.
- Both Left-Rotate and Right-Rotate preserve the BST Property.
- We'll use Left-Rotate and Right-Rotate in the RB-Insert procedure.

Example

![Binary Search Tree Example](example.png)

Binary Search Tree Property

- Let x be a node in a binary search tree. If y is a node in the left subtree of x, then key(y) ≤ key(x). If y is a node in the right subtree of x then key(y) ≥ key(x).
In-Class Exercise

Show that Left-Rotate(x) maintains the BST Property. In other words, show that if the BST Property was true for the tree before the Left-Rotate(x) operation, then it's true for the tree after the operation.

- Show that after rotation, the BST property holds for the entire subtree rooted at x
- Show that after rotation, the BST property holds for the subtree rooted at y
- Now argue that after rotation, the BST property holds for the entire tree

RB-Insert(T,z)

1. Set left(z) and right(z) to be NIL
2. Let y be the last node processed during a search for z in T
3. Insert z as the appropriate child of y (left child if key(z) ≤ y, right child otherwise)
4. Color z red
5. Call the procedure RB-Insert-Fixup

RB-Insert-Fixup(T,z)

RB-Insert-Fixup(T,z){
 while (color(p(z)) is red){
 case 1: z’s uncle, y, is red{
 do case 1
 }
 case 2: z’s uncle, y, is black and z is a right child{
 do case 2
 }
 case 3: z’s uncle, y, is black and z is a left child{
 do case 3
 }
 }
 color(root(T)) = black;
}

Case 1

![Diagram showing Case 1 of RB-Insert-Fixup]
At the start of each iteration of the loop:

- Node z is red
- If parent(z) is the root, then parent(z) is black
- If there is a violation of the red-black properties, there is at most one violation, and it is either property 2 or 4. If there is a violation of property 2, it occurs because z is the root and is red. If there is a violation of property 4, it occurs because both z and parent(z) are red.

- We'll now briefly discuss some other balanced BSTs
- They all implement Insert, Delete, Lookup, Successor, Predecessor, Maximum and Minimum efficiently
An AVL tree is height-balanced: For each node x, the heights of the left and right subtrees of x differ by at most 1.

Each node has an additional height field $h(x)$.

Claim: An AVL tree with n nodes has height $O(\log n)$.

Claim: An AVL tree with n nodes has height $O(\log n)$.

Q: For an AVL tree of height h, how many nodes must it have in it?

A: We can write a recurrence relation. Let $T(h)$ be the minimum number of nodes in a tree of height h.

Then $T(h) = T(h-1) + T(h-2) + 1$, $T(2) = T(1) = 1$.

This is similar to the recurrence relation for Fibonacci numbers! Solution:

$$T(h) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^h - 2$$

So we have the equation $n > T(h)$. Let $\phi = \frac{1 + \sqrt{5}}{2}$. Then:

$$n \geq \frac{1}{\sqrt{5}}(\phi^h) - 2 \quad (1)$$

$$\log n \geq \log\left(\frac{1}{\sqrt{5}}\right) + h \log \phi - 1 \quad (2)$$

$$\log n - \log\left(\frac{1}{\sqrt{5}}\right) + 1 \geq h \log \phi \quad (3)$$

$$C \cdot \log n \geq h \quad (4)$$

Where the final inequality holds for appropriate constant C, and for n large enough. The final inequality implies that $h = O(\log n)$.

After insert into an AVL tree, the tree may no longer be height-balanced.

Need to “fix-up” the subtrees so that they become height-balanced again.

Can do this using rotations (similar to case for RB-Trees).

Similar story for deletions.
B-Trees

- B-Trees are balanced search trees designed to work well on disks
- B-Trees are not binary trees: each node can have many children
- Each node of a B-Tree contains several keys, not just one
- When doing searches, we decide which child link to follow by finding the correct interval of our search key in the key set of the current node.

Disk Accesses

- Consider any search tree
- The number of disk accesses per search will dominate the run time
- Unless the entire tree is in memory, there will usually be a disk access every time an arbitrary node is examined
- The number of disk accesses for most operations on a B-tree is proportional to the height of the B-tree
- I.e. The info on each node of a B-tree can be stored in main memory

B-Tree Properties

The following is true for every node x

- x stores keys, $key_1(x), \ldots, key_l(x)$ in sorted order (nondecreasing)
- x contains pointers, $c_1(x), \ldots, c_{l+1}(x)$ to its children
- Let k_i be any key stored in the subtree rooted at the i-th child of x, then $k_1 \leq key_1(x) \leq k_2 \leq key_2(x) \cdots \leq key_l(x) \leq k_{l+1}$

- All leaves have the same depth
- Lower and upper bounds on the number of keys a node can contain, given as a function of a fixed integer t:
 - Every node other than the root must have $\geq (t - 1)$ keys, and t children. If the tree is non-empty, the root must have at least one key (and 2 children)
 - Every node can contain at most $2t-1$ keys, so any internal node can have at most $2t$ children
Note

- The above properties imply that the height of a B-tree is no more than \(\log_t \frac{n+1}{2} \), for \(t \geq 2 \), where \(n \) is the number of keys.
- If we make \(t \) larger, we can save a larger (constant) fraction over RB-trees in the number of nodes examined.
- A (2-3-4)-tree is just a B-tree with \(t = 2 \).

In-Class Exercise

We will now show that for any B-Tree with height \(h \) and \(n \) keys, \(h \leq \log_t \frac{n+1}{2} \), where \(t \geq 2 \).

Consider a B-Tree of height \(h > 1 \):

- Q1: What is the minimum number of nodes at depth 1, 2, and 3?
- Q2: What is the minimum number of nodes at depth \(i \)?
- Q3: Now give a lower bound for the total number of keys (e.g. \(n \geq \ldots \))
- Q4: Show how to solve for \(h \) in this inequality to get an upper bound on \(h \).

Splay Trees

- A Splay Tree is a kind of BST where the standard operations run in \(O(\log n) \) amortized time.
- This means that over \(l \) operations (e.g. Insert, Lookup, Delete, etc.), where \(l \) is sufficiently large, the total cost is \(O(l \log n) \).
- In other words, the average cost per operation is \(O(\log n) \).
- However a single operation could still take \(O(n) \) time.
- In practice, they are very fast.

Skip Lists

- Technically, not a BST, but they implement all of the same operations.
- Very elegant randomized data structure, simple to code but analysis is subtle.
- They guarantee that, with high probability, all the major operations take \(O(\log n) \) time.
- We’ll discuss them more next class.
High Level Analysis

Comparison of various BSTs

- RB-Trees: + guarantee $O(\log n)$ time for each operation, easy to augment, – high constants
- AVL-Trees: + guarantee $O(\log n)$ time for each operation, – high constants
- B-Trees: + works well for trees that won’t fit in memory, – inserts and deletes are more complicated
- Splay Trees: + small constants, – amortized guarantees only
- Skip Lists: + easy to implement, – runtime guarantees are probabilistic only

Which Data Structure to use?

- Splay trees work very well in practice, the “hidden constants” are small
- Unfortunately, they can not guarantee that every operation takes $O(\log n)$
- When this guarantee is required, B-Trees are best when the entire tree will not be stored in memory
- If the entire tree will be stored in memory, RB-Trees, AVL-Trees, and Skip Lists are good

Skip List

- Technically, not a BST, but they implement all of the same operations
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time

- A skip list is basically a collection of doubly-linked lists, L_1, L_2, \ldots, L_x, for some integer x
- Each list has a special head and tail node, the keys of these nodes are assumed to be $-\text{MAXINT}$ and $+\text{MAXINT}$ respectively
- The keys in each list are in sorted order (non-decreasing)
• Every key is in the list L_1.
• For all $i > 2$, if a key x is in the list L_i, it is also in L_{i-1}. Further there are up and down pointers between the x in L_i and the x in L_{i-1}.
• All the head(tail) nodes from neighboring lists are interconnected.

Search

Search(k){
 pLeft = L_x.head;
 for (i=x;i>=0;i--){
 Search from pLeft in L_i to get the rightmost elem, r, with value <= k;
 pLeft = pointer to r in L_(i-1);
 }
 if (pLeft==k)
 return pLeft
 else
 return nil
}

Example