\qquad

CS 361, Lecture 3

Jared Saia
University of New Mexico

Today's Outline

- Asymptotic Analysis
- The Question: Design an algorithm to return the largest sum of contiguous integers in an array of ints
- Example: if the input is $(-10,2,3,-2,0,5,-15)$, the largest sum is 8 , which we get from $(2,3,-2,0,5)$.

```
MaxSeq1 (int arr[], int n)
    int max = 0;
    for (int i = 0;i<n;i++)
        for (int j=i;j<n;j++)
            int sum = 0;
            for (int k=i;k<=j;k++)
            sum += arr[k];
            if (sum > max)
                max = sum;
    return max;
```

\qquad

- Let $f(n)$ be the number of operations this algorithm performs on an array of size n. Then:

$$
\begin{align*}
f(n) & =\sum_{i=1}^{n} \sum_{j=i}^{n} 1 \tag{1}\\
& =\sum_{i=1}^{n}(n-i+1) \tag{2}\\
& =\sum_{i=1}^{n} i \tag{3}\\
& =(n+1)(n / 2) \tag{4}\\
& =O\left(n^{2}\right) \tag{5}
\end{align*}
$$

\qquad Challenge \qquad

```
MaxSeq2 (int arr[], int n)
    int max = 0;
    for (int i = 1;i<=n;i++)
        int sum = 0;
        for (int j=i;j<=n;j++)
            sum += arr[j];
            if (sum > max)
                        max = sum; //and store i and j if desired
    return max;
```

- MaxSeq2 is much better than MaxSeq1 ($O\left(n^{2}\right)$ vs $O\left(n^{3}\right)$)
- But it's still not great, can you do better?
\qquad
\qquad
- Both MaxSeq1 and MaxSeq2 have same best case and worst case behavior
- We can say more about them than big-O time
- I.e. We can say that each has run time approx "=" to some amoung; We can also say that MaxSeq2 is approx " $<$ " MaxSeq1;
- O is an asymptotic analogue to " \leq ", but we'd also like analogues to $<,=, \geq$ and $>$.

When would you use each of these? Examples:

○ " \leq " This algorithm is $O\left(n^{2}\right)$ (i.e. worst case is $\Theta\left(n^{2}\right)$)
Θ " $=$ " This algorithm is $\Theta(n)$ (best and worst case are $\Theta(n)$)
$\Omega \quad " \geq$ " Any comparison-based algorithm for sorting is $\Omega(n \log n)$
$o \quad$ " $<$ " Can you write an algorithm for sorting that is $o\left(n^{2}\right)$?
ω " $>$ " This algorithm is not linear, it can take time $\omega(n)$
$\omega{ }^{\prime}>{ }^{\prime}$ This algorithm is not linear, it can take time $\omega(n)$

- $O(g(n))=\left\{f(n)\right.$: there exist positive constants c and n_{0} such that $0 \leq f(n) \leq c g(n)$ for all $\left.n \geq n_{0}\right\}$
- $\Theta(g(n))=\left\{f(n)\right.$: there exist positive constants c_{1}, c_{2}, and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $\left.n \geq n_{0}\right\}$
- $\Omega(g(n))=\left\{f(n)\right.$: there exist positive constants c and n_{0} such that $0 \leq c g(n) \leq f(n)$ for all $\left.n \geq n_{0}\right\}$

Formal Defns (II)

- $o(g(n))=\{f(n):$ for any positive constant $c>0$ there exists $n_{0}>0$ such that $0 \leq f(n)<c g(n)$ for all $\left.n \geq n_{0}\right\}$
- $\omega(g(n))=\{f(n)$: for any positive constant $c>0$ there exists $n_{0}>0$ such that $0 \leq c g(n)<f(n)$ for all $\left.n \geq n_{0}\right\}$
\qquad
- Let $f(n), g(n)$ be two functions of n
- Let $f_{1}(n)$, be the fastest growing term of $f(n)$, stripped of its coefficient.
- Let $g_{1}(n)$, be the fastest growing term of $g(n)$, stripped of its coefficient.

Then we can say:

- If $f_{1}(n) \leq g_{1}(n)$ then $f(n)=O(g(n))$
- If $f_{1}(n) \geq g_{1}(n)$ then $f(n)=\Omega(g(n))$
- If $f_{1}(n)=g_{1}(n)$ then $f(n)=\Theta(g(n))$
- If $f_{1}(n)<g_{1}(n)$ then $f(n)=o(g(n))$
- If $f_{1}(n)>g_{1}(n)$ then $f(n)=\omega(g(n))$
- Let $f(n)$ and $g(n)$ be differentiable functions that both go to infinity. Then by L'Hopital:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

\qquad
\qquad

Consider some functions $f(n)$ and $g(n)$ that are asymptotically nonnegative

- $f(n)$ is $o(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
- $f(n)$ is $\omega(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$
- Note that $f(n)$ is $\omega(g(n))$ if and only if $g(n)$ is $o(f(n))$
\qquad
\qquad

True or False? (Justify your answer)

- $n^{3}+4$ is $\omega\left(n^{2}\right)$
- $n \log n^{3}$ is $\Theta(n \log n)$
- $\log ^{3} 5 n^{2}$ is $\Theta(\log n)$
- $10^{-10} n^{2}+n$ is $\Theta(n)$
- $n \log n$ is $\Omega(n)$
- $n^{3}+4$ is $o\left(n^{4}\right)$
\qquad

Proofs

\qquad

- To prove an asymptotic relationship between two functions $f(n)$ and $g(n)$ takes more effort
- To do this, we need to start with the formal definition of the relationship we are trying to establish
- In particular, we will need to show that there exist constants which satisfy the appropriate definitions

Let $f(n)=10 \log ^{2} n+\log n, g(n)=\log ^{2} n$. Let's show that $f(n)=\Theta(g(n))$.

- We want positive constants c_{1}, c_{2} and n_{0} such that $0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)$ for all $n \geq n_{0}$
- In other words, we want c_{1}, c_{2} and n_{0} such that:

$$
0 \leq c_{1} \log ^{2} n \leq 10 \log ^{2} n+\log n \leq c_{2} \log ^{2} n
$$

Dividing by $\log ^{2} n$, we get:

$$
0 \leq c_{1} \leq 10+1 / \log n \leq c_{2}
$$

- If we choose $c_{1}=1, c_{2}=11$ and $n_{0}=2$, then the above inequality will hold for all $n \geq n_{0}$

Example 2

Let $f(n)=\log ^{a} n, g(n)=n^{b}$ for any constants a and $b>0$. Let's show that $f(n)=o(g(n))$:

- For any positive constant c, we want to show there is a $n_{0}>0$ such that $0 \leq f(n)<c g(n)$ for all $n \geq n_{0}$.
- In other words, we want to show that there is $n_{0}>0$ such that

$$
0 \leq \log ^{a} n \leq c n^{b}
$$

Dividing by n^{b}, we get

$$
0 \leq \frac{\log ^{a} n}{n^{b}} \leq c
$$

- We know that $\lim _{n \rightarrow \infty} \frac{\log ^{a} n}{n^{b}}=0$ (by L'Hopital) so for any constant c, there must be a n_{0} such that the above inequality is satisfied for all $n \geq n_{0}$.
\qquad
\qquad

Let $f(n)$ be asymptotically positive and let $g(n)=10 * f(n)$. Let's show that $f(n)=\Theta(g(n))$

- We must show that there are positive constants c_{1}, c_{2} and n_{0} such that:

$$
c_{1} * 10 f(n) \leq f(n) \leq c_{2} 10 f(n)
$$

Dividing through by $f(n)$, we have

$$
c_{1} 10 \leq 1 \leq c_{2} 10
$$

- If we choose $c_{1}=c_{2}=1 / 10$ and $n_{0}=1$, then the above inequality is satisfied for all $n \geq n_{0}$
- In studying behavior of algorithms, we'll be more concerned with rate of growth than with constants
- $O, \Theta, \Omega, o, \omega$ give us a way to talk about rates of growth
- Asymptotic analysis is an extremely useful way to compare run times of algorithms
- However, empirical analysis is also important (you'll be studying this in your project)

In-Class Exercise

Let $f(n)$ be an asympotitically positive function and let $g(n)=$ $f(n) \log n$. Show that $f(n)=o(g(n))$

- Write down exactly what needs to be shown to prove that $f(n)=o(g(n))$
- Now solve for n_{0} as a function of c in the above statement
- Getting the run times of recursive algorithms can be challenging
- Recall our algorithm for binary search
- Let $T(n)$ be the run time of this algorithm on an array of size n
- Then we can write $T(1)=1, T(n)=T(n / 2)+1$
\qquad
\qquad

```
bool BinarySearch (int arr[], int s, int e, int key){
    if (e-s<=0) return false;
    int mid = (e-s)/2;
    if (arr[key]==arr[mid]){
        return true;
    }else if (key < arr[mid]){
        return BinarySearch (arr,s,mid,key);}
    else{
        return BinarySearch (arr,mid,e,key)}
}
```

- The running time of an algorithm on a constant size input is always $\Theta(1)$
- Thus for convenience, we usually omit statements of the boundary conditions and just assume $T(n)$ is constant when n is a constant.
- Example: Instead of saying "If $n=1, T(n)=\theta(1)$, and if $T(n)=2 * T(n / 2)+\Theta(n)$ ", we just say " $T(n)=2 * T(n / 2)+$ $\Theta(n) "$
"Oh how should I not lust after eternity and after the nuptial ring of rings, the ring of recurrence" - Friedrich Nietzsche, Thus Spoke Zarathustra
- $T(n)=T(n / 2)+1$ is an example of a recurrence relation
- A Recurrence Relation is any equation for a function $T(n)$, where T appears on both the left and right sides of the equation.
- We always want to "solve" these recurrence relation by getting an equation for $T(n)$, where T appears on just the left side of the equation
- Start hw2
- Sign up for the class mailing list (on class web page)
- Read Chapter 3 and 4 in the text

