
CS 361, Lecture 3

Jared Saia

University of New Mexico

Today’s Outline

• Asymptotic Analysis

1

Interview Question from before

• The Question: Design an algorithm to return the largest sum

of contiguous integers in an array of ints

• Example: if the input is (−10,2,3,−2,0,5,−15), the largest

sum is 8, which we get from (2,3,−2,0,5).

2

A Naive Algorithm

MaxSeq1 (int arr[], int n)

int max = 0;

for (int i = 0;i<n;i++)

for (int j=i;j<n;j++)

int sum = 0;

for (int k=i;k<=j;k++)

sum += arr[k];

if (sum > max)

max = sum;

return max;

3



Naive Algorithm

• Analysis from last time showed this takes O(n3) steps

• Worst case and best case is the same

• Can we do better?

4

A Better Algorithm

MaxSeq2 (int arr[], int n)

int max = 0;

for (int i = 1;i<=n;i++)

int sum = 0;

for (int j=i;j<=n;j++)

sum += arr[j];

if (sum > max)

max = sum; //and store i and j if desired

return max;

5

Analysis of MaxSeq2

• Let f(n) be the number of operations this algorithm performs

on an array of size n. Then:

f(n) =
n∑

i=1

n∑

j=i

1 (1)

=
n∑

i=1

(n− i+ 1) (2)

=
n∑

i=1

i (3)

= (n+ 1)(n/2) (4)

= O(n2) (5)

6

Challenge

• MaxSeq2 is much better than MaxSeq1 (O(n2) vs O(n3))

• But it’s still not great, can you do better?

7



Beyond Big-O

• Both MaxSeq1 and MaxSeq2 have same best case and worst

case behavior

• We can say more about them than big-O time

• I.e. We can say that each has run time approx “=” to

some amoung; We can also say that MaxSeq2 is approx “<”

MaxSeq1;

• O is an asymptotic analogue to “≤”, but we’d also like ana-

logues to <, =, ≥ and >.

8

Relatives of big-O

When would you use each of these? Examples:

O “≤” This algorithm is O(n2) (i.e. worst case is Θ(n2))
Θ “=” This algorithm is Θ(n) (best and worst case are Θ(n))
Ω “≥” Any comparison-based algorithm for sorting is Ω(n logn)
o “<” Can you write an algorithm for sorting that is o(n2)?
ω “>” This algorithm is not linear, it can take time ω(n)

9

Formal Defns

• O(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

• Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}

• Ω(g(n)) = {f(n) : there exist positive constants c and n0

such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}

10

Formal Defns (II)

• o(g(n)) = {f(n) : for any positive constant c > 0 there exists

n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0}

• ω(g(n)) = {f(n) : for any positive constant c > 0 there exists

n0 > 0 such that 0 ≤ cg(n) < f(n) for all n ≥ n0}

11



Rule of Thumb

• Let f(n), g(n) be two functions of n

• Let f1(n), be the fastest growing term of f(n), stripped of

its coefficient.

• Let g1(n), be the fastest growing term of g(n), stripped of

its coefficient.

Then we can say:

• If f1(n) ≤ g1(n) then f(n) = O(g(n))

• If f1(n) ≥ g1(n) then f(n) = Ω(g(n))

• If f1(n) = g1(n) then f(n) = Θ(g(n))

• If f1(n) < g1(n) then f(n) = o(g(n))

• If f1(n) > g1(n) then f(n) = ω(g(n))

12

Useful Facts

Consider some functions f(n) and g(n) that are asymptotically

nonnegative

• f(n) is o(g(n)) if limn→∞f(n)
g(n) = 0

• f(n) is ω(g(n)) if limn→∞f(n)
g(n) =∞

• Note that f(n) is ω(g(n)) if and only if g(n) is o(f(n))

13

L’Hopital’s Rule

• Let f(n) and g(n) be differentiable functions that both go to

infinity. Then by L’Hopital:

limn→∞
f(n)

g(n)
= limn→∞

f ′(n)

g′(n)

14

More Examples

The following are all true statements:

• ∑n
i=1 i

2 is O(n3), Ω(n3) and Θ(n3)

• logn is o(
√
n)

• logn is o(log2 n)

• 10,000n2 + 25n is Θ(n2)

15



Problems

True or False? (Justify your answer)

• n3 + 4 is ω(n2)

• n logn3 is Θ(n logn)

• log3 5n2 is Θ(logn)

• 10−10n2 + n is Θ(n)

• n logn is Ω(n)

• n3 + 4 is o(n4)

16

Proofs

• To prove an asymptotic relationship between two functions

f(n) and g(n) takes more effort

• To do this, we need to start with the formal definition of the

relationship we are trying to establish

• In particular, we will need to show that there exist constants

which satisfy the appropriate definitions

17

Example

Let f(n) = 10 log2 n + logn, g(n) = log2 n. Let’s show that

f(n) = Θ(g(n)).

• We want positive constants c1, c2 and n0

such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

• In other words, we want c1, c2 and n0 such that:

0 ≤ c1 log2 n ≤ 10 log2 n+ logn ≤ c2 log2 n

Dividing by log2 n, we get:

0 ≤ c1 ≤ 10 + 1/ logn ≤ c2

• If we choose c1 = 1, c2 = 11 and n0 = 2, then the above

inequality will hold for all n ≥ n0

18

Example 2

Let f(n) = loga n, g(n) = nb for any constants a and b > 0 .

Let’s show that f(n) = o(g(n)):

• For any positive constant c, we want to show there is a n0 > 0

such that 0 ≤ f(n) < cg(n) for all n ≥ n0.

• In other words, we want to show that there is n0 > 0 such

that

0 ≤ loga n ≤ cnb

Dividing by nb, we get:

0 ≤ loga n

nb
≤ c

• We know that limn→∞ loga n
nb

= 0 (by L’Hopital) so for any

constant c, there must be a n0 such that the above inequal-

ity is satisfied for all n ≥ n0.

19



Example 3

Let f(n) be asymptotically positive and let g(n) = 10 ∗ f(n).

Let’s show that f(n) = Θ(g(n))

• We must show that there are positive constants c1, c2 and n0

such that:

c1 ∗ 10f(n) ≤ f(n) ≤ c210f(n)

Dividing through by f(n), we have

c110 ≤ 1 ≤ c210

• If we choose c1 = c2 = 1/10 and n0 = 1, then the above

inequality is satisfied for all n ≥ n0

20

In-Class Exercise

Let f(n) be an asympotitically positive function and let g(n) =

f(n) logn. Show that f(n) = o(g(n))

• Write down exactly what needs to be shown to prove that

f(n) = o(g(n))

• Now solve for n0 as a function of c in the above statement

21

Asymptotic Analysis - Take Away

• In studying behavior of algorithms, we’ll be more concerned

with rate of growth than with constants

• O, Θ,Ω, o, ω give us a way to talk about rates of growth

• Asymptotic analysis is an extremely useful way to compare

run times of algorithms

• However, empirical analysis is also important (you’ll be study-

ing this in your project)

22

Recurrence Relations

• Getting the run times of recursive algorithms can be chal-

lenging

• Recall our algorithm for binary search

• Let T (n) be the run time of this algorithm on an array of

size n

• Then we can write T (1) = 1, T (n) = T (n/2) + 1

23



Alg: Binary Search

bool BinarySearch (int arr[], int s, int e, int key){

if (e-s<=0) return false;

int mid = (e-s)/2;

if (arr[key]==arr[mid]){

return true;

}else if (key < arr[mid]){

return BinarySearch (arr,s,mid,key);}

else{

return BinarySearch (arr,mid,e,key)}

}

24

Recurrence Relations

“Oh how should I not lust after eternity and after the nuptial

ring of rings, the ring of recurrence” - Friedrich Nietzsche, Thus

Spoke Zarathustra

• T (n) = T (n/2) + 1 is an example of a recurrence relation

• A Recurrence Relation is any equation for a function T (n),

where T appears on both the left and right sides of the equa-

tion.

• We always want to “solve” these recurrence relation by get-

ting an equation for T (n), where T appears on just the left

side of the equation

25

A Side Note

• The running time of an algorithm on a constant size input is

always Θ(1)

• Thus for convenience, we usually omit statements of the

boundary conditions and just assume T (n) is constant when

n is a constant.

• Example: Instead of saying “If n = 1, T (n) = θ(1), and if

T (n) = 2∗T (n/2) + Θ(n)”, we just say “T (n) = 2∗T (n/2) +

Θ(n)”

26

Todo

• Start hw2

• Sign up for the class mailing list (on class web page)

• Read Chapter 3 and 4 in the text

27


