CS 361, Lecture 4

Jared Saia
University of New Mexico

Today's Outline

\qquad

- Recurrence Relations

Let $f(n)$ be an always positive function and let $g(n)=f(n) \log n$. Show that $f(n)=o(g(n))$

- For any positive constant c, we want to show there is a $n_{0}>0$ such that $0 \leq f(n)<c g(n)$ for all $n \geq n_{0}$.
- In other words, we want to show that there is $n_{0}>0$ such that

$$
0 \leq f(n)<c f(n) \log n
$$

Dividing by $f(n) \log n$, we get:

$$
0 \leq \frac{f(n)}{f(n) \log n}<c
$$

- We know that $\lim _{n \rightarrow \infty} \frac{f(n)}{f(n) \log n}=\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$. Thus, for any constant c, there must be a n_{0} such that the above inequality is satisfied for all $n \geq n_{0}$.

In-Class Soln 1

\qquad

In-Class Soln 2

\qquad
Let $f(n)$ be an always positive function and let $g(n)=f(n) \log n$. Show that $f(n)=o(g(n))$

- For any positive constant c, we want to show there is a $n_{0}>0$ such that $0 \leq f(n)<c g(n)$ for all $n \geq n_{0}$.
- In other words, we want to show that there is $n_{0}>0$ such that

$$
0 \leq f(n)<c f(n) \log n
$$

Dividing by $f(n) \log n$, we get:

$$
\begin{aligned}
\frac{1}{\log n} & <c \\
(1 / c) & <\log n \\
2^{1 / c} & <n
\end{aligned}
$$

- Thus, for any c, if we choose $n_{0}>2^{1 / c}$, for all $n \geq n_{0}$, $f(n)<c g(n)$
\qquad
\qquad
- In studying behavior of algorithms, we'll be more concerned with rate of growth than with constants
- $O, \Theta, \Omega, o, \omega$ give us a way to talk about rates of growth
- Asymptotic analysis is an extremely useful way to compare run times of algorithms
- However, empirical analysis is also important (you'll be studying this in your project)
\qquad
- Getting the run times of recursive algorithms can be challenging
- Recall our algorithm for binary search
- Let $T(n)$ be the run time of this algorithm on an array of size n
- Then we can write $T(1)=1, T(n)=T(n / 2)+1$

```
```

```
bool BinarySearch (int arr [], int s, int e, int key){
```

```
```

bool BinarySearch (int arr [], int s, int e, int key){

```
```

```
bool BinarySearch (int arr [], int s, int e, int key){
    if (e-s<=0) return false;
    if (e-s<=0) return false;
    if (e-s<=0) return false;
    int mid = (e-s)/2;
    int mid = (e-s)/2;
    int mid = (e-s)/2;
    if (arr[key]==arr[mid]){
    if (arr[key]==arr[mid]){
    if (arr[key]==arr[mid]){
        return true;
        return true;
        return true;
    }else if (key < arr[mid]){
    }else if (key < arr[mid]){
    }else if (key < arr[mid]){
        return BinarySearch (arr,s,mid,key);}
        return BinarySearch (arr,s,mid,key);}
        return BinarySearch (arr,s,mid,key);}
    else{
    else{
    else{
        return BinarySearch (arr,mid,e,key)}
        return BinarySearch (arr,mid,e,key)}
        return BinarySearch (arr,mid,e,key)}
}
```

```
}
```

```
}
```

```
```

\,

```
```

\,

```
```

\,

```

\section*{What?}
- \(T(n)\) is a function giving the run time of Binary Search on an array of size \(n\)
- \(T(n)=T(n / 2)+1\) is a an example of a recurrence relation
- A Recurrence Relation is any equation for a function \(T(n)\), where \(T(n)\) appears on both the left and right sides of the equation.
- We always want to "solve" these recurrence relation by getting an equation for \(T(n)\), where \(T\) appears on just the left side of the equation
\(\qquad\)
- We can use recurrence relations to analyze many properties of recursive algorithms e.g. run time, value returned, etc.
- To do this we need to: 1) write down the correct recurrence relation 2) solve the recurrence relation
- Step 1 is usually easier than step 2

\section*{A Side Note}
\(\qquad\)
- The running time of an algorithm on a constant size input is always \(\Theta(1)\)
- Thus for convenience, we frequently omit statements of the boundary conditions and just assume \(T(n)\) is constant when \(n\) is a constant.
- Example: Instead of saying "If \(n=1, T(n)=\theta(1)\), and if \(T(n)=2 * T(n / 2)+\Theta(n)\) ", we just say " \(T(n)=2 * T(n / 2)+\) \(\Theta(n) "\)
```

```
Alg1 (int n){
```

```
Alg1 (int n){
    if (n<=1) return 1;
    if (n<=1) return 1;
    else
    else
        return Alg1(n/2) + Alg1(n/2) + n;
        return Alg1(n/2) + Alg1(n/2) + n;
}
```

```
}
```

```
\(\qquad\)
\(\qquad\)
- To get the "real" run time or value returned, we need to solve the recurrence relation
- This means that no function appear on the right hand side
- We will review several techniques for solving recurrences including: the substitution method, recursion trees, the Master method, and annihilators
- Let's guess that the solution to \(T(n)=2 * T(n / 2)+n\) is \(T(n)=O(n \log n)\)
- We want to show that \(T(n) \leq c n \log n\) for appropriate choice of constant \(c\)
- We can prove this by induction.

\section*{Substitution Method}
\(\qquad\)
- One way to solve recurrences is the substitution method aka "guess and check"
- What we do is make a good guess for the solution to \(T(n)\), and then try to prove this is the solution by induction
- Base Case: \(T(2) \leq c * 2\)
- Inductive Hypothesis: For all \(j<n, T(j) \leq c j \log j\)
- Inductive Step:
\[
\begin{align*}
T(n) & =2 T(n / 2)+n  \tag{1}\\
& \leq 2(c n / 2 \log (n / 2))+n  \tag{2}\\
& \leq c n \log (n / 2)+n  \tag{3}\\
& =c n(\log n-\log 2)+n  \tag{4}\\
& =c n \log n-c n+n  \tag{5}\\
& \leq c n \log n \tag{6}
\end{align*}
\]

The last step holds if \(c \geq 1\)
\(\qquad\)

Recurrences and Induction are closely related:
- To find some solution to \(f(n)\), solve a recurrence
- To prove that a solution for \(f(n)\) is correct, use induction

For both recurrences and induction, we always solve a big problem by reducing it to smaller problems!
- \(f(n)\) is the sum of the integers \(1, \ldots, n\)

\section*{Some Examples}
\(\qquad\)
- The next several problems can be attacked by induction/recurrences
- For each problem, we'll need to reduce it to smaller problems
- Question: How can we reduce each problem to a smaller subproblem?

Tree Problem \(\qquad\)
- \(f(n)\) is the maximum number of leaf nodes in a binary tree of height \(n\)

Recall:
- In a binary tree, each node has at most two children
- A leaf node is a node with no children
- The height of a tree is the length of the longest path from the root to a leaf node.
\(\qquad\)
\(\qquad\)
- \(f(n)\) is the maximum number of queries that need to be made for binary search on a sorted array of size \(n\).
- Sum Problem: What is the sum of all numbers between 1 and \(n-1\) (i.e. \(f(n-1)\) )?
- Tree Problem: What is the maximum number of leaf nodes in a binary tree of height \(n-1\) ? (i.e. \(f(n-1)\) )
- Binary Search Problem: What is the maximum number of queries that need to be made for binary search on a sorted array of size \(n / 2\) ? (i.e. \(f(n / 2)\) )
- Dominoes problem: What is the number of ways to tile a 2 by \(n-1\) rectangle with dominoes? What is the number of ways to tile a 2 by \(n-2\) rectangle with dominoes? (i.e. \(f(n-1), f(n-2))\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
- Want to show that \(f(n)=(n+1) n / 2\).
- Prove by induction on \(n\)
- Base case: \(f(1)=2 * 1 / 2=1\)
- Inductive hypothesis: for all \(j<n, f(j)=(j+1) j / 2\)
- Inductive step:
\[
\begin{align*}
f(n) & =f(n-1)+n  \tag{7}\\
& =n(n-1) / 2+n  \tag{8}\\
& =(n+1) n / 2 \tag{9}
\end{align*}
\]

\section*{Inductive Proofs}
\(\qquad\)
- Sum Problem: \(f(n)=(n+1) n / 2\)
- Tree Problem: \(f(n)=2^{n}\)
- Binary Search Problem: \(f(n)=\log n\)
- Dominoes problem: \(f(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}\)
\(\qquad\)
\(\qquad\)
- Want to show that \(f(n)=\log n\). (assume \(n\) is a power of 2 )
- Prove by induction on \(n\)
- Base case: \(f(2)=\log 2=1\)
- Inductive hypothesis: for all \(j<n, f(j)=\log j\)
- Inductive step:
\[
\begin{align*}
f(n) & =f(n / 2)+1  \tag{13}\\
& =\log n / 2+1  \tag{14}\\
& =\log n-\log 2+1  \tag{15}\\
& =\log n \tag{16}
\end{align*}
\]
- Read Chapter 4 (Recurrences) in text
\(\qquad\)
- Consider the recurrence \(f(n)=2 f(n / 2)+1, f(1)=1\)
- Guess that \(f(n) \leq c n-1\) :
- Q1: Show the base case - for what values of \(c\) does it hold?
- Q2: What is the inductive hypothesis?
- Q3: Show the inductive step.```

