
CS 361, Lecture 4

Jared Saia

University of New Mexico

Today’s Outline

• Recurrence Relations

1

In-Class Soln 1

Let f(n) be an always positive function and let g(n) = f(n) logn.
Show that f(n) = o(g(n))

• For any positive constant c, we want to show there is a n0 > 0
such that 0 ≤ f(n) < cg(n) for all n ≥ n0.
• In other words, we want to show that there is n0 > 0 such

that

0 ≤ f(n) < cf(n) logn

Dividing by f(n) logn, we get:

0 ≤ f(n)

f(n) logn
< c

• We know that limn→∞ f(n)
f(n) logn = limn→∞ 1

logn = 0. Thus,
for any constant c, there must be a n0 such that the above
inequality is satisfied for all n ≥ n0.

2

In-Class Soln 2

Let f(n) be an always positive function and let g(n) = f(n) logn.
Show that f(n) = o(g(n))

• For any positive constant c, we want to show there is a n0 > 0
such that 0 ≤ f(n) < cg(n) for all n ≥ n0.
• In other words, we want to show that there is n0 > 0 such

that

0 ≤ f(n) < cf(n) logn

Dividing by f(n) logn, we get:

1

logn
< c

(1/c) < logn

21/c < n

• Thus, for any c, if we choose n0 > 21/c, for all n ≥ n0,
f(n) < cg(n)

3



Asymptotic Analysis - Take Away

• In studying behavior of algorithms, we’ll be more concerned

with rate of growth than with constants

• O, Θ,Ω, o, ω give us a way to talk about rates of growth

• Asymptotic analysis is an extremely useful way to compare

run times of algorithms

• However, empirical analysis is also important (you’ll be study-

ing this in your project)

4

Recurrence Relations

• Getting the run times of recursive algorithms can be chal-

lenging

• Recall our algorithm for binary search

• Let T (n) be the run time of this algorithm on an array of

size n

• Then we can write T (1) = 1, T (n) = T (n/2) + 1

5

Alg: Binary Search

bool BinarySearch (int arr[], int s, int e, int key){

if (e-s<=0) return false;

int mid = (e-s)/2;

if (arr[key]==arr[mid]){

return true;

}else if (key < arr[mid]){

return BinarySearch (arr,s,mid,key);}

else{

return BinarySearch (arr,mid,e,key)}

}

6

What?

• T (n) is a function giving the run time of Binary Search on

an array of size n

• T (n) = T (n/2) + 1 is a an example of a recurrence relation

• A Recurrence Relation is any equation for a function T (n),

where T (n) appears on both the left and right sides of the

equation.

• We always want to “solve” these recurrence relation by get-

ting an equation for T (n), where T appears on just the left

side of the equation

7



Use of Recurrences

• We can use recurrence relations to analyze many properties

of recursive algorithms e.g. run time, value returned, etc.

• To do this we need to: 1) write down the correct recurrence

relation 2) solve the recurrence relation

• Step 1 is usually easier than step 2

8

A Side Note

• The running time of an algorithm on a constant size input is

always Θ(1)

• Thus for convenience, we frequently omit statements of the

boundary conditions and just assume T (n) is constant when

n is a constant.

• Example: Instead of saying “If n = 1, T (n) = θ(1), and if

T (n) = 2∗T (n/2) + Θ(n)”, we just say “T (n) = 2∗T (n/2) +

Θ(n)”

9

Alg1

Alg1 (int n){

if (n<=1) return 1;

else

return Alg1(n/2) + Alg1(n/2) + n;

}

10

Example1

• Let T (n) be the run time of Alg1 on input n

• Then we can write T (n) = 2T (n/2) + 1

• Let f(n) be the value returned by Alg1 on input n

• Then we can write f(n) = 2f(n/2) + n and f(1) = 1

11



What now?

• To get the “real” run time or value returned, we need to

solve the recurrence relation

• This means that no function appear on the right hand side

• We will review several techniques for solving recurrences in-

cluding: the substitution method, recursion trees, the Master

method, and annihilators

12

Substitution Method

• One way to solve recurrences is the substitution method aka

“guess and check”

• What we do is make a good guess for the solution to T (n),

and then try to prove this is the solution by induction

13

Example

• Let’s guess that the solution to T (n) = 2 ∗ T (n/2) + n is

T (n) = O(n logn)

• We want to show that T (n) ≤ cn logn for appropriate choice

of constant c

• We can prove this by induction.

14

Proof

• Base Case: T (2) ≤ c ∗ 2

• Inductive Hypothesis: For all j < n, T (j) ≤ cj log j

• Inductive Step:

T (n) = 2T (n/2) + n (1)

≤ 2(cn/2 log(n/2)) + n (2)

≤ cn log(n/2) + n (3)

= cn(logn− log 2) + n (4)

= cn logn− cn+ n (5)

≤ cn logn (6)

The last step holds if c ≥ 1

15



Recurrences and Induction

Recurrences and Induction are closely related:

• To find some solution to f(n), solve a recurrence

• To prove that a solution for f(n) is correct, use induction

For both recurrences and induction, we always solve a big prob-

lem by reducing it to smaller problems!

16

Some Examples

• The next several problems can be attacked by induction/recurrences

• For each problem, we’ll need to reduce it to smaller problems

• Question: How can we reduce each problem to a smaller

subproblem?

17

Sum Problem

• f(n) is the sum of the integers 1, . . . , n

18

Tree Problem

• f(n) is the maximum number of leaf nodes in a binary tree

of height n

Recall:

• In a binary tree, each node has at most two children

• A leaf node is a node with no children

• The height of a tree is the length of the longest path from

the root to a leaf node.

19



Binary Search Problem

• f(n) is the maximum number of queries that need to be

made for binary search on a sorted array of size n.

20

Dominoes Problem

• f(n) is the number of ways to tile a 2 by n rectangle with

dominoes (a domino is a 2 by 1 rectangle)

21

Simpler Subproblems

• Sum Problem: What is the sum of all numbers between 1

and n− 1 (i.e. f(n− 1))?

• Tree Problem: What is the maximum number of leaf nodes

in a binary tree of height n− 1? (i.e. f(n− 1))

• Binary Search Problem: What is the maximum number of

queries that need to be made for binary search on a sorted

array of size n/2? (i.e. f(n/2))

• Dominoes problem: What is the number of ways to tile a

2 by n − 1 rectangle with dominoes? What is the number

of ways to tile a 2 by n − 2 rectangle with dominoes? (i.e.

f(n− 1), f(n− 2))

22

Recurrences

• Sum Problem: f(n) = f(n− 1) + n, f(1) = 1

• Tree Problem: f(n) = 2 ∗ f(n− 1), f(0) = 1

• Binary Search Problem: f(n) = f(n/2) + 1, f(2) = 1

• Dominoes problem: f(n) = f(n − 1) + f(n − 2), f(1) = 1,

f(2) = 1

23



Guesses

• Sum Problem: f(n) = (n+ 1)n/2

• Tree Problem: f(n) = 2n

• Binary Search Problem: f(n) = logn

• Dominoes problem: f(n) = 1√
5

(
1+
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n

24

Inductive Proofs

“Trying is the first step to failure” - Homer Simpson

• Now that we’ve made these guesses, we can try using induc-

tion to prove they’re correct (the substitution method)

• We’ll give inductive proofs that these guesses are correct for

the first three problems

25

Sum Problem

• Want to show that f(n) = (n+ 1)n/2.

• Prove by induction on n

• Base case: f(1) = 2 ∗ 1/2 = 1

• Inductive hypothesis: for all j < n, f(j) = (j + 1)j/2

• Inductive step:

f(n) = f(n− 1) + n (7)

= n(n− 1)/2 + n (8)

= (n+ 1)n/2 (9)

26

Tree Problem

• Want to show that f(n) = 2n.

• Prove by induction on n

• Base case: f(0) = 20 = 1

• Inductive hypothesis: for all j < n, f(j) = 2j

• Inductive step:

f(n) = 2 ∗ f(n− 1) (10)

= 2 ∗ (2n−1) (11)

= 2n (12)

27



Binary Search Problem

• Want to show that f(n) = logn. (assume n is a power of 2)

• Prove by induction on n

• Base case: f(2) = log 2 = 1

• Inductive hypothesis: for all j < n, f(j) = log j

• Inductive step:

f(n) = f(n/2) + 1 (13)

= logn/2 + 1 (14)

= logn− log 2 + 1 (15)

= logn (16)

28

In Class Exercise

• Consider the recurrence f(n) = 2f(n/2) + 1, f(1) = 1

• Guess that f(n) ≤ cn− 1:

• Q1: Show the base case - for what values of c does it hold?

• Q2: What is the inductive hypothesis?

• Q3: Show the inductive step.

29

Todo

• Read Chapter 4 (Recurrences) in text

30


