
CS 361, Lecture 5

Jared Saia

University of New Mexico

Today’s Outline

• Recurrence Relations

• Recursion Trees

1

Alg1

Alg1 (int n){

if (n<=1) return 1;

else

return Alg1(n/2) + Alg1(n/2) + n;

}

2

Example1

• Let T (n) be the run time of Alg1 on input n

• Then we can write T (n) = 2T (n/2) + 1

• How to solve for T (n)?

• Up to this point, I’ve been supplying you with good “guesses”

for recurrence solutions

• Q: How do we get these guesses?

3



Getting Good Guesses (I)

Following are some good guesses for solutions to recurrences.
logn√
n

n
n logn
n2

n3

2n

4

Better Techniques (II)

We will review three useful techniques:

• Recursion tree method

• Master Theorem

• Annihilators

5

Recursion-tree method

• Each node represents the cost of a single subproblem in a

recursive call

• First, we sum the costs of the nodes in each level of the tree

• Then, we sum the costs of all of the levels

6

Recursion-tree method

• Used to get a good guess which is then refined and verified

using substitution method

• Best method (usually) for recurrences where a term like

T (n/c) appears on the right hand side of the equality

7



Example 1

• Consider the recurrence for the running time of Mergesort:

T (n) = 2T (n/2) + n, T (1) = O(1)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n

n

n

8

Example 1

• We can see that each level of the tree sums to n

• Further the depth of the tree is logn (n/2d = 1 implies that

d = logn).

• Thus there are logn+ 1 levels each of which sums to n

• Hence T (n) = Θ(n logn)

9

Example 2

• Let’s solve the recurrence T (n) = 3T (n/4) + n2

• Note: For simplicity, from now on, we’ll assume that T (i) =

Θ(1) for all small constants i. This will save us from writing

the base cases each time.

(n/16)^2 (n/16)^2

n^2

(n/4)^2 (n/4)^2

(n/16)^2

(n/4)^2

(n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2

n^2

(3/16)n^2

(3/16)^2*n^2

...

10

Example 2

• We can see that the i-th level of the tree sums to (3/16)in2.

• Further the depth of the tree is log4 n (n/4d = 1 implies that

d = log4 n)

• So we can see that T (n) =
∑log4 n
i=0 (3/16)in2

11



Solution

T (n) =
log4 n∑

i=0

(3/16)in2 (1)

< n2
∞∑

i=0

(3/16)i (2)

=
1

1− (3/16)
n2 (3)

= O(n2) (4)

12

Master Theorem

• Divide and conquer algorithms often give us running-time

recurrences of the form

T (n) = aT (n/b) + f(n) (5)

• Where a and b are constants and f(n) is some other function.

• The so-called “Master Method” gives us a general method

for solving such recurrences when f(n) is a simple polynomial.

13

Master Theorem

• Unfortunately, the Master Theorem doesn’t work for all func-

tions f(n)

• Further many useful recurrences don’t look like T (n)

• However, the theorem allows for very fast solution of recur-

rences when it applies

14

Master Theorem

• Master Theorem is just a special case of the use of recursion

trees

• Consider equation T (n) = aT (n/b) + f(n)

• We start by drawing a recursion tree

15



The Recursion Tree

• The root contains the value f(n)

• It has a children, each of which contains the value f(n/b)

• Each of these nodes has a children, containing the value

f(n/b2)

• In general, level i contains ai nodes with values f(n/bi)

• Hence the sum of the nodes at the i-th level is aif(n/bi)

16

Details

• The tree stops when we get to the base case for the recur-

rence

• We’ll assume T (1) = f(1) = Θ(1) is the base case

• Thus the depth of the tree is logb n and there are logb n+ 1

levels

17

Recursion Tree

• Let T (n) be the sum of all values stored in all levels of the

tree:

T (n) = f(n)+a f(n/b)+a2 f(n/b2)+· · ·+ai f(n/bi)+· · ·+aL f(n/bL)

• Where L = logb n is the depth of the tree

• Since f(1) = Θ(1), the last term of this summation is Θ(aL) =

Θ(alogb n) = Θ(nlogb a)

18

A “Log Fact” Aside

• It’s not hard to see that alogb n = nlogb a

alogb n = nlogb a (6)

alogb n = aloga n∗logb a (7)

logb n = loga n ∗ logb a (8)

• We get to the last eqn by taking loga of both sides

• The last eqn is true by our third basic log fact

19



Master Theorem

• We can now state the Master Theorem

• We will state it in a way slightly different from the book

• Note: The Master Method is just a “short cut” for the re-

cursion tree method. It is less powerful than recursion trees.

20

Master Method

The recurrence T (n) = aT (n/b) + f(n) can be solved as follows:

• If a f(n/b) ≤ Kf(n) for some constant K < 1, then T (n) =

Θ(f(n)).

• If a f(n/b) ≥ K f(n) for some constant K > 1, then T (n) =

Θ(nlogb a).

• If a f(n/b) = f(n), then T (n) = Θ(f(n) logb n).

21

Proof

• If f(n) is a constant factor larger than a f(n/b), then the sum

is a descending geometric series. The sum of any geometric

series is a constant times its largest term. In this case, the

largest term is the first term f(n).

• If f(n) is a constant factor smaller than a f(n/b), then the

sum is an ascending geometric series. The sum of any ge-

ometric series is a constant times its largest term. In this

case, this is the last term, which by our earlier argument is

Θ(nlogb a).

• Finally, if a f(n/b) = f(n), then each of the L + 1 terms in

the summation is equal to f(n).

22

Example

• T (n) = T (3n/4) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

4/3,f(n) = n

• Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of

4/3, so T (n) = Θ(n)

23



Example

• Karatsuba’s multiplication algorithm: T (n) = 3T (n/2) +

n

• If we write this as T (n) = aT (n/b) + f(n), then a = 3,b =

2,f(n) = n

• Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of

3/2, so T (n) = Θ(nlog2 3)

24

Example

• Mergesort: T (n) = 2T (n/2) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 2,b =

2,f(n) = n

• Here a f(n/b) = f(n), so T (n) = Θ(n logn)

25

Example

• T (n) = T (n/2) + n logn

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

2,f(n) = n logn

• Here a f(n/b) = n/2 logn/2 is smaller than f(n) = n logn by

a constant factor, so T (n) = Θ(n logn)

26

In-Class Exercise

• Consider the recurrence: T (n) = 4T (n/2) + n lgn

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

27



In-Class Exercise

• Consider the recurrence: T (n) = 2T (n/4) + n lgn

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

28

Take Away

• Recursion tree and Master method are good tools for solving

many recurrences

• However these methods are limited (they can’t help us get

guesses for recurrences like f(n) = f(n− 1) + f(n− 2))

• For info on how to solve these other more difficult recur-

rences, review the notes on annihilators on the class web

page.

29

Todo

• Read Chapter 4 (Recurrences) in text

30


