Today’s Outline

- Recurrence Relations
- Recursion Trees

Example 1

- Let $T(n)$ be the run time of Alg1 on input n
- Then we can write $T(n) = 2T(n/2) + 1$
- How to solve for $T(n)$?
- Up to this point, I’ve been supplying you with good “guesses” for recurrence solutions
- Q: How do we get these guesses?
Getting Good Guesses (I)

Following are some good guesses for solutions to recurrences.

\[\log n \]
\[\sqrt{n} \]
\[n \]
\[n \log n \]
\[n^2 \]
\[n^3 \]
\[2^n \]

Recursion-tree method

- Each node represents the cost of a single subproblem in a recursive call
- First, we sum the costs of the nodes in each level of the tree
- Then, we sum the costs of all of the levels

Better Techniques (II)

We will review three useful techniques:

- Recursion tree method
- Master Theorem
- Annihilators

Recursion-tree method

- Used to get a good guess which is then refined and verified using substitution method
- Best method (usually) for recurrences where a term like \(T(n/c) \) appears on the right hand side of the equality
• Consider the recurrence for the running time of Mergesort:
 \(T(n) = 2T(n/2) + n, \ T(1) = O(1) \)

Example 1

- We can see that each level of the tree sums to \(n \)
- Further the depth of the tree is \(\log n \) \((n/2^d = 1 \) implies that \(d = \log n \)\).
- Thus there are \(\log n + 1 \) levels each of which sums to \(n \)
- Hence \(T(n) = \Theta(n \log n) \)

Example 2

- Let’s solve the recurrence \(T(n) = 3T(n/4) + n^2 \)
- Note: For simplicity, from now on, we’ll assume that \(T(i) = \Theta(1) \) for all small constants \(i \). This will save us from writing the base cases each time.

- We can see that the \(i \)-th level of the tree sums to \((3/16)^i n^2 \).
- Further the depth of the tree is \(\log_4 n \) \((n/4^d = 1 \) implies that \(d = \log_4 n \)\).
- So we can see that \(T(n) = \sum_{i=0}^{\log_4 n} (3/16)^i n^2 \)
Solution

\[
T(n) = \sum_{i=0}^{\log_4 n} (3/16)^i n^2 < n^2 \sum_{i=0}^{\infty} (3/16)^i = \frac{1}{1 - (3/16)} n^2 = O(n^2)
\]

Master Theorem

- Divide and conquer algorithms often give us running-time recurrences of the form
 \[
 T(n) = a T(n/b) + f(n)
 \]
- Where \(a\) and \(b\) are constants and \(f(n)\) is some other function.
- The so-called “Master Method” gives us a general method for solving such recurrences when \(f(n)\) is a simple polynomial.

- Unfortunately, the Master Theorem doesn’t work for all functions \(f(n)\)
- Further many useful recurrences don’t look like \(T(n)\)
- However, the theorem allows for very fast solution of recurrences when it applies

- Master Theorem is just a special case of the use of recursion trees
- Consider equation \(T(n) = a T(n/b) + f(n)\)
- We start by drawing a recursion tree
The Recursion Tree

- The root contains the value $f(n)$
- It has a children, each of which contains the value $f(n/b)$
- Each of these nodes has a children, containing the value $f(n/b^2)$
- In general, level i contains a^i nodes with values $f(n/b^i)$
- Hence the sum of the nodes at the i-th level is $a^i f(n/b^i)$

Details

- The tree stops when we get to the base case for the recurrence
- We’ll assume $T(1) = f(1) = \Theta(1)$ is the base case
- Thus the depth of the tree is $\log_b n$ and there are $\log_b n + 1$ levels

Recursion Tree

- Let $T(n)$ be the sum of all values stored in all levels of the tree:
 \[T(n) = f(n) + a f(n/b) + a^2 f(n/b^2) + \cdots + a^L f(n/b^L) \]
- Where $L = \log_b n$ is the depth of the tree
- Since $f(1) = \Theta(1)$, the last term of this summation is $\Theta(a^L) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a})$

A “Log Fact” Aside

- It’s not hard to see that $a^{\log_b n} = n^{\log_b a}$
 \[
 a^{\log_b n} = n^{\log_b a} \quad (6)
 \]
 \[
 a^{\log_b n} = a^{\log_a n \times \log_b a} \quad (7)
 \]
 \[
 \log_b n = \log_a n \times \log_b a \quad (8)
 \]
- We get to the last eqn by taking \log_a of both sides
- The last eqn is true by our third basic log fact
We can now state the Master Theorem
- We will state it in a way slightly different from the book
- Note: The Master Method is just a “short cut” for the recursion tree method. It is less powerful than recursion trees.

Master Method

The recurrence $T(n) = aT(n/b) + f(n)$ can be solved as follows:

- If $a f(n/b) \leq K f(n)$ for some constant $K < 1$, then $T(n) = \Theta(f(n))$.
- If $a f(n/b) \geq K f(n)$ for some constant $K > 1$, then $T(n) = \Theta(n^{\log_b a})$.
- If $a f(n/b) = f(n)$, then $T(n) = \Theta(f(n) \log_b n)$.

Proof

- If $f(n)$ is a constant factor larger than $a f(n/b)$, then the sum is a descending geometric series. The sum of any geometric series is a constant times its largest term. In this case, the largest term is the first term $f(n)$.
- If $f(n)$ is a constant factor smaller than $a f(n/b)$, then the sum is an ascending geometric series. The sum of any geometric series is a constant times its largest term. In this case, this is the last term, which by our earlier argument is $\Theta(n^{\log_b a})$.
- Finally, if $a f(n/b) = f(n)$, then each of the $L + 1$ terms in the summation is equal to $f(n)$.

Example

- $T(n) = T(3n/4) + n$
- If we write this as $T(n) = aT(n/b) + f(n)$, then $a = 1, b = 4/3, f(n) = n$
- Here $a f(n/b) = 3n/4$ is smaller than $f(n) = n$ by a factor of $4/3$, so $T(n) = \Theta(n)$
Example

- **Karatsuba’s multiplication algorithm**: \(T(n) = 3T(n/2) + \frac{n}{n} \)
 - If we write this as \(T(n) = aT(n/b) + f(n) \), then \(a = 3, b = 2, f(n) = n \)
 - Here \(a f(n/b) = 3n/2 \) is bigger than \(f(n) = n \) by a factor of \(3/2 \), so \(T(n) = \Theta(n^{\log_2 3}) \)

Example

- \(T(n) = T(n/2) + n \log n \)
 - If we write this as \(T(n) = aT(n/b) + f(n) \), then \(a = 1, b = 2, f(n) = n \log n \)
 - Here \(a f(n/b) = n/2 \log n/2 \) is smaller than \(f(n) = n \log n \) by a constant factor, so \(T(n) = \Theta(n \log n) \)

Example

- **Mergesort**: \(T(n) = 2T(n/2) + n \)
 - If we write this as \(T(n) = aT(n/b) + f(n) \), then \(a = 2, b = 2, f(n) = n \)
 - Here \(a f(n/b) = f(n) \), so \(T(n) = \Theta(n \log n) \)

In-Class Exercise

- Consider the recurrence: \(T(n) = 4T(n/2) + n \log n \)
 - Q: What is \(f(n) \) and \(a f(n/b) \)?
 - Q: Which of the three cases does the recurrence fall under (when \(n \) is large)?
 - Q: What is the solution to this recurrence?
In-Class Exercise

- Consider the recurrence: \(T(n) = 2T(n/4) + n \log n \)
- Q: What is \(f(n) \) and \(af(n/b) \)?
- Q: Which of the three cases does the recurrence fall under (when \(n \) is large)?
- Q: What is the solution to this recurrence?

Take Away

- Recursion tree and Master method are good tools for solving many recurrences
- However these methods are limited (they can't help us get guesses for recurrences like \(f(n) = f(n - 1) + f(n - 2) \))
- For info on how to solve these other more difficult recurrences, review the notes on annihilators on the class web page.

Todo

- Read Chapter 4 (Recurrences) in text