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Outline

“For NASA, space is still a high priority”, Dan Quayle

• Heap Sort

• Priority Queues

• Quicksort
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Build-Max-Heap

Build-Max-Heap (A)

1. heap-size (A) = length (A)

2. for (i = blength(A)/2c;i > 0;i−−)

(a) do Max-Heapify (A,i)
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Max-Heapify

Max-Heapify (A,i)

1. l = Left(i)

2. r = Right(i)

3. largest = i

4. if (l ≤ heap-size(A) and A[l] > A[i]) then largest = l

5. if (r ≤ heap-size(A) and A[r] > A[largest]) then largest = r

6. if largest 6= i then

(a) exchange A[i] and A[largest]

(b) Max-Heapify (A,largest)
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Heap-Sort Review

Heap-Sort (A)

1. Build-Max-Heap (A)

2. for (i=length (A);i > 1;i−−)

(a) do exchange A[1] and A[i]

(b) heap-size (A) = heap-size (A) - 1

(c) Max-Heapify (A,1)
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Analysis

• Heap-Sort takes O(n logn) time. Q: What is best case run-

time? Q: What is runtime if the array is already in sorted

order?

• Q: Correctness?
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Analysis

We can prove correctness by using the following loop invariant:

• At the start of each iteration of the for loop, the subarray

A[1..i] is a max-heap containing the i smallest elements of

A[1..n] and the subarray A[i+1..n] contains the n-i largest

elements of A[1..n] in sorted order.
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Priority Queues

A Priority Queue is an ADT for a set S which supports the

following operations:

• Insert (S,x): inserts x into the set S

• Maximum (S): returns the maximum element in S

• Extract-Max (S): removes and returns the element of S with

the largest key

• Increase-Key (S,x,k): increases the value of x’s key to the

new value k (k is assumed to be as large as x’s current key)

(note: can also have an analagous min-priority queue)
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Applications of Priority Queue

• Application: Scheduling jobs on a workstation

• Priority Queue holds jobs to be performed and their priorities

• When a job is finished or interrupted, highest-priority job is

chosen using Extract-Max

• New jobs can be added using Insert

(note: an application of a min-priority queue is scheduling events

in a simulation)
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Implementation

• A Priority Queue can be implemented using heaps

• We’ll show how to implement each of these four functions

using heaps
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Heap-Maximum

Heap-Maximum (A)

1. return A[1]
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Heap-Extract-Max

Heap-Extract-Max (A)

1. if (heap-size (A)<1) then return “error”

2. max = A[1];

3. A[1] = A[heap-size (A)];

4. heap-size (A)−−;

5. Max-Heapify (A,1);

6. return max;

13

Heap-Increase-Key

Heap-Increase-Key (A,i,key)

1. if (key < A[i]) then error “new key is smaller than current

key”

2. A[i] = key;

3. while (i>1 and A[Parent (i)] < A[i])

(a) do exchange A[i] and A[Parent (i)]

(b) i = Parent (i);
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Heap-Insert

Heap-Insert (A,key)

1. heap-size (A) ++;

2. A[heap-size (A)] = - infinity

3. Heap-Increase-Key (A,heap-size (A), key)
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Analysis

• Heap-Maximum takes O(1) time

• Heap-Extract-Max takes O(logn)

• Heap-Increase-Key takes O(logn)

• Heap-Insert takes O(logn)

Correctness?
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In-Class Exercise

• Imagine you have a min-heap with the following operations

defined and taking O(logn):

– (key,data) Heap-Extract-Min (A)

– Heap-Insert (A,key,data)

• Now assume you’re given k sorted lists, each of length n/k

• Use this min-heap to give a O(n log k) algorithm for merging

these k lists into one sorted list of size n.
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In-Class Exercise

• Q1: What is the high level idea for solving this problem?

• Q2: What is the pseudocode for solving the problem?

• Q3: What is the runtime analysis?

• Q4: What would be an appropriate loop invariant for proving

correctness of the algorithm?
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Quicksort

• Based on divide and conquer strategy

• Worst case is Θ(n2)

• Expected running time is Θ(n logn)

• An In-place sorting algorithm

• Almost always the fastest sorting algorithm
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Quicksort

• Divide: Pick some element A[q] of the array A and partition

A into two arrays A1 and A2 such that every element in A1

is ≤ A[q], and every element in A2 is > A[p]

• Conquer: Recursively sort A1 and A2

• Combine: A1 concatenated with A[q] concatenated with A2

is now the sorted version of A
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The Algorithm

//PRE: A is the array to be sorted, p>=1;

// r is <= the size of A

//POST: A[p..r] is in sorted order

Quicksort (A,p,r){

if (p<r){

q = Partition (A,p,r);

Quicksort (A,p,q-1);

Quicksort (A,q+1,r);

}
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Partition

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size

// of A, A[r] is the pivot element

//POST: Let A’ be the array A after the function is run. Then

// A’[p..r] contains the same elements as A[p..r]. Further,

// all elements in A’[p..res-1] are <= A[r], A’[res] = A[r],

// and all elements in A’[res+1..r] are > A[r]

Partition (A,p,r){

x = A[r];

i = p-1;

for (j=p;j<=r-1;j++){

if (A[j]<=x){

i++;

exchange A[i] and A[j];

}

exchange A[i+1] and A[r];

return i+1;

}
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Correctness of Partition

Basic idea: The array is partitioned into four regions, x is the

pivot

• Region 1: Region that is less than or equal to x

• Region 2: Region that is greater than x

• Region 3: Unprocessed region

• Region 4: Region that contains x only

Region 1 and 2 are growing and Region 3 is shrinking

24

Correctness

Basic idea: The array is partitioned into four regions, x is the

pivot

• Region 1: Region that is less than or equal to x

(between p and i)

• Region 2: Region that is greater than x

(between i+ 1 and j − 1)

• Region 3: Unprocessed region

(between j and r − 1)

• Region 4: Region that contains x only

(r)

Region 1 and 2 are growing and Region 3 is shrinking
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Example

• Consider the array (2 6 4 1 5 3)

26

Loop Invariant

At the beginning of each iteration of the for loop, for any index

k:

1. If p ≤ k ≤ i then A[k] ≤ x
2. If i+ 1 ≤ k ≤ j − 1 then A[k] > x

3. If k = r then A[k] = x
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Todo

• Finish Chapter 6

• Start Chapter 7
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