L’Hôpital

For any functions $f(n)$ and $g(n)$ which approach infinity and are differentiable, L’Hôpital tells us that:

- $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$

Example

- Q: Which grows faster $\ln n$ or \sqrt{n}?
- Let $f(n) = \ln n$ and $g(n) = \sqrt{n}$
- Then $f'(n) = \frac{1}{n}$ and $g'(n) = (1/2)n^{-1/2}$
- So we have:

$$\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1/n}{(1/2)n^{-1/2}} = \lim_{n \to \infty} \frac{2}{n^{1/2}} = 0$$

- Thus \sqrt{n} grows faster than $\ln n$ and so $\ln n = O(\sqrt{n})$
A digression on logs

It rolls down stairs alone or in pairs,
and over your neighbor’s dog,
it’s great for a snack or to put on your back,
it’s log, log, log!
- “The Log Song” from the Ren and Stimpy Show

- The log function shows up very frequently in algorithm analysis
- As computer scientists, when we use log, we’ll mean \(\log_2 \)
 (i.e. if no base is given, assume base 2)

Definition

- \(\log_x y \) is by definition the value \(z \) such that \(x^z = y \)
- \(x^{\log_x y} = y \) by definition

Examples

- \(\log 1 = 0 \)
- \(\log 2 = 1 \)
- \(\log 32 = 5 \)
- \(\log 2^k = k \)

Note: \(\log n \) is way, way smaller than \(n \) for large values of \(n \)

- \(\log_3 9 = 2 \)
- \(\log_5 125 = 3 \)
- \(\log_4 16 = 2 \)
- \(\log_{24} 24^{100} = 100 \)
Facts about exponents

Recall that:

- \((x^y)^z = x^{yz}\)
- \(x^y x^z = x^{y+z}\)

From these, we can derive some facts about logs

Incredibly useful fact about logs

- Fact 3: \(\log_c a = \frac{\log a}{\log c}\)

To prove this, consider the equation \(a = c^{\log_c a}\), take \(\log_2\) of both sides, and use Fact 2. **Memorize this fact**

Facts about logs

To prove both equations, raise both sides to the power of 2, and use facts about exponents

- Fact 1: \(\log(xy) = \log x + \log y\)
- Fact 2: \(\log a^c = c \log a\)

Memorize these two facts

Log facts to memorize

- Fact 1: \(\log(xy) = \log x + \log y\)
- Fact 2: \(\log a^c = c \log a\)
- Fact 3: \(\log_c a = \frac{\log a}{\log c}\)

These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)
- Note that $\log_8 n = \log n / \log 8$.
- Note that $\log_{600} n^{200} = 200 \times \log n / \log 600$.
- Note that $\log_{100000} 30 \cdot n^2 = 2 \cdot \log n / \log 100000 + \log 30 / \log 100000$.
- Thus, $\log_8 n$, $\log_{600} n^{600}$, and $\log_{100000} 30 \cdot n^2$ are all $O(\log n)$.
- In general, for any constants k_1 and k_2, $\log_{k_1} n^{k_2} = k_2 \log n / \log k_1$, which is just $O(\log n)$.

- $\log^2 n = (\log n)^2$.
- $\log^2 n$ is $O(\log^2 n)$, not $O(\log n)$.
- This is true since $\log^2 n$ grows asymptotically faster than $\log n$.
- All log functions of form $k_1 \log_{k_3}^{k_2} k_4 \cdot n^{k_5}$ for constants k_1, k_2, k_3, k_4 and k_5 are $O(\log^{k_2} n)$.

Take Away

- All log functions of form $k_1 \log_{k_2}^{k_3} k_4 \cdot n^{k_5}$ for constants k_1, k_2, k_3 and k_4 are $O(\log n)$.
- For this reason, we don’t really “care” about the base of the log function when we do asymptotic notation.
- Thus, binary search, ternary search and k-ary search all take $O(\log n)$ time.

In-Class Exercise

Simplify and give O notation for the following functions. In the big-O notation, write all logs base 2:

- $\log 10 n^2$
- $\log^2 n^4$
- $2^{\log_4 n}$
- $\log \log \sqrt{n}$
Recurrences and Inequalities

- Often easier to prove that a recurrence is no more than some quantity than to prove that it equals something
- Consider: \(f(n) = f(n - 1) + f(n - 2) \), \(f(1) = f(2) = 1 \)
- “Guess” that \(f(n) \leq 2^n \)

Inequalities (II)

Goal: Prove by induction that for \(f(n) = f(n - 1) + f(n - 2) \), \(f(1) = f(2) = 1 \), \(f(n) \leq 2^n \)

- Base case: \(f(1) = 1 \leq 2^1 \), \(f(2) = 1 \leq 2^2 \)
- Inductive hypothesis: for all \(j < n \), \(f(j) \leq 2^j \)
- Inductive step:

\[
\begin{align*}
 f(n) &= f(n - 1) + f(n - 2) \\
 &\leq 2^{n-1} + 2^{n-2} \\
 &< 2 \cdot 2^{n-1} \\
 &= 2^n
\end{align*}
\]

Recursion-tree method

- Each node represents the cost of a single subproblem in a recursive call
- First, we sum the costs of the nodes in each level of the tree
- Then, we sum the costs of all of the levels

Recursion-tree method

- Used to get a good guess which is then refined and verified using substitution method
- Best method (usually) for recurrences where a term like \(T(n/c) \) appears on the right hand side of the equality
Example 1

- Consider the recurrence for the running time of Mergesort:
 \[T(n) = 2T(n/2) + n, \quad T(1) = O(1) \]

We can see that each level of the tree sums to \(n \).
Further the depth of the tree is \(\log n \) \((n/2^d = 1 \text{ implies that } d = \log n)\).
Thus there are \(\log n + 1 \) levels each of which sums to \(n \).
Hence \(T(n) = \Theta(n \log n) \)

Example 2

- Let's solve the recurrence \(T(n) = 3T(n/4) + n^2 \)
- Note: For simplicity, from now on, we'll assume that \(T(i) = \Theta(1) \) for all small constants \(i \). This will save us from writing the base cases each time.

We can see that the \(i \)-th level of the tree sums to \((3/16)^i n^2\).
Further the depth of the tree is \(\log_4 n \) \((n/4^d = 1 \text{ implies that } d = \log_4 n)\)
So we can see that \(T(n) = \sum_{i=0}^{\log_4 n} (3/16)^i n^2 \)
Solution

\[T(n) = \sum_{i=0}^{\log_\frac{4}{16} n} (3/16)^i n^2 \]
\[< n^2 \sum_{i=0}^{\infty} (3/16)^i \]
\[= \frac{1}{1 - (3/16)} n^2 \]
\[= O(n^2) \]

Master Theorem

- Divide and conquer algorithms often give us running-time recurrences of the form
 \[T(n) = aT(n/b) + f(n) \]
- Where \(a \) and \(b \) are constants and \(f(n) \) is some other function.
- The so-called “Master Method” gives us a general method for solving such recurrences when \(f(n) \) is a simple polynomial.

- Unfortunately, the Master Theorem doesn’t work for all functions \(f(n) \)
- Further many useful recurrences don’t look like \(T(n) \)
- However, the theorem allows for very fast solution of recurrences when it applies

- Master Theorem is just a special case of the use of recursion trees
- Consider equation \(T(n) = aT(n/b) + f(n) \)
- We start by drawing a recursion tree
The Recursion Tree

- The root contains the value $f(n)$
- It has a children, each of which contains the value $f(n/b)$
- Each of these nodes has a children, containing the value $f(n/b^2)$
- In general, level i contains a^i nodes with values $f(n/b^i)$
- Hence the sum of the nodes at the i-th level is $a^i f(n/b^i)$

Recursion Tree

- Let $T(n)$ be the sum of all values stored in all levels of the tree:
 \[T(n) = f(n) + a f(n/b) + a^2 f(n/b^2) + \cdots + a^i f(n/b^i) + \cdots + a^L f(n/b^L) \]
- Where $L = \log_b n$ is the depth of the tree
- Since $f(1) = \Theta(1)$, the last term of this summation is $\Theta(a^L) = \Theta(a \log_b n) = \Theta(n \log_b a)$

Details

- The tree stops when we get to the base case for the recurrence
- We’ll assume $T(1) = f(1) = \Theta(1)$ is the base case
- Thus the depth of the tree is $\log_b n$ and there are $\log_b n + 1$ levels

A “Log Fact” Aside

- It’s not hard to see that $a^{\log_b n} = n^{\log_b a}$

\[
\begin{align*}
 a^{\log_b n} &= n^{\log_b a} \\
 a^{\log_b n} &= a^{\log_a n \cdot \log_b a} \\
 \log_b n &= \log_a n \cdot \log_b a
\end{align*}
\]

- We get to the last eqn by taking \log_a of both sides
- The last eqn is true by our third basic log fact
We can now state the Master Theorem
We will state it in a way slightly different from the book
Note: The Master Method is just a “short cut” for the recursion tree method. It is less powerful than recursion trees.

The recurrence $T(n) = aT(n/b) + f(n)$ can be solved as follows:

- If $af(n/b) \leq f(n)/K$ for some constant $K > 1$, then $T(n) = \Theta(f(n))$.
- If $af(n/b) \geq Kf(n)$ for some constant $K > 1$, then $T(n) = \Theta(n^{\log_b a})$.
- If $af(n/b) = f(n)$, then $T(n) = \Theta(f(n) \log_b n)$.

Proof

- If $f(n)$ is a constant factor larger than $af(n/b)$, then the sum is a descending geometric series. The sum of any geometric series is a constant times its largest term. In this case, the largest term is the first term $f(n)$.
- If $f(n)$ is a constant factor smaller than $af(n/b)$, then the sum is an ascending geometric series. The sum of any geometric series is a constant times its largest term. In this case, this is the last term, which by our earlier argument is $\Theta(n^{\log_b a})$.
- Finally, if $af(n/b) = f(n)$, then each of the $L + 1$ terms in the summation is equal to $f(n)$.

Example

- $T(n) = T(3n/4) + n$
- If we write this as $T(n) = aT(n/b) + f(n)$, then $a = 1, b = 4/3, f(n) = n$
- Here $af(n/b) = 3n/4$ is smaller than $f(n) = n$ by a factor of $4/3$, so $T(n) = \Theta(n)$
Karatsuba’s multiplication algorithm: \(T(n) = 3T(n/2) + \frac{n}{2} \)
- If we write this as \(T(n) = aT(n/b) + f(n) \), then \(a = 3, b = 2, f(n) = n \)
- Here \(a f(n/b) = 3n/2 \) is bigger than \(f(n) = n \) by a factor of \(3/2 \), so \(T(n) = \Theta(n^{\log_2 3}) \)

Mergesort: \(T(n) = 2T(n/2) + n \)
- If we write this as \(T(n) = aT(n/b) + f(n) \), then \(a = 2, b = 2, f(n) = n \)
- Here \(a f(n/b) = f(n) \), so \(T(n) = \Theta(n \log n) \)

Consider the recurrence: \(T(n) = 4T(n/2) + n \log n \)
- Q: What is \(f(n) \) and \(a f(n/b) \)?
- Q: Which of the three cases does the recurrence fall under (when \(n \) is large)?
- Q: What is the solution to this recurrence?
In-Class Exercise

- Consider the recurrence: $T(n) = 2T(n/4) + n \log n$
- Q: What is $f(n)$ and $af(n/b)$?
- Q: Which of the three cases does the recurrence fall under (when n is large)?
- Q: What is the solution to this recurrence?

Todo

- Read Chapter 3 and 4 in the text
- Work on Homework 1

Take Away

- Recursion tree and Master method are good tools for solving many recurrences
- However these methods are limited (they can't help us get guesses for recurrences like $f(n) = f(n - 1) + f(n - 2)$)
- For info on how to solve these other more difficult recurrences, review the notes on annihilators on the class web page.