Final Examination

CS 362 Data Structures and Algorithms
Spring, 2008

Name: ____________________________
Email: ____________________________

- Print your name and email, neatly in the space provided above; print your name at the upper right corner of every page. Please print legibly.
- This is an closed book exam. You are permitted to use only two pages of “cheat sheets” that you have brought to the exam and a calculator. Nothing else is permitted.
- Do all the problems in this booklet. Show your work! You will not get partial credit if we cannot figure out how you arrived at your answer.
- Write your answers in the space provided for the corresponding problem. Let us know if you need more paper.
- Don’t spend too much time on any single problem. The questions are weighted equally. If you get stuck, move on to something else and come back later.
- If any question is unclear, ask us for clarification.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
<th>Grader</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Short Answer

(a) Assume there is some function foo that has amortized cost of $O(\log n)$. If foo is called n times in a row, what is the maximum cost of any single call to foo in this sequence of calls?

Solution: The maximum total cost of the n calls is $O(n \log n)$. Thus the maximum cost of a single call is $O(n \log n)$

(b) Consider the following problem. You are given a connected graph G with n nodes and m edges. You want to remove as many edges as possible and still keep the graph connected.

- How many edges must remain in the graph in order to ensure that G is connected?

 Solution: $n - 1$ edges must remain in order to have a spanning tree of G

- Give an efficient algorithm to solve the problem

 Solution: Find a spanning tree for the graph using your favorite algorithm (BFS, DFS, MST, etc). Then remove all edges that are not in this spanning tree
(c) Assume you have a sorting algorithm that runs in linear time worst case (obviously this would have to be a non-comparison based sorting algorithm). If you use this new sorting algorithm, what will be the new asymptotic run time of Kruskal’s on a graph with \(n \) nodes and \(m \) edges? Assume the amortized cost of all operations on the union-find data structure is \(\log^* n \). Justify your answer. \textit{Solution:} The runtime will now be dominated by the costs of calls to the union-find data structure. Kruskal’s calls \text{Make-Set} \(n \) times, \text{Find-Set} \(2m \) times and union \(n - 1 \) times. The total run time will thus be dominated by calls to \text{Find-Set} and so will be \(O(m \log^* n) \).

(d) Assume you are given as input a directed graph without cycles (this is commonly called a directed acyclic graph or DAG for short), and a special source vertex in this graph that has no in-edges. All other vertices in the graph have in-edges, and the edges on the graph have both positive and negative weights. How quickly can you find the longest path in this graph? Justify your answer.

\text{Hint:} This is easy if you use an algorithm from class in the correct way.

\textit{Solution:} Flip the sign of all the edge weights and then use Bellman-Ford to find the shortest path from the source vertex in this new graph. This takes \(O(|V||E|) \) time.
2. Recurrences and Asymptotics

(a) Give an asymptotic solution for the following recurrence: $T(n) = 2T(n/2) + n^2$ Solution:
$f(n) = n^2$ and $af(n/b) = 2(n/2)^2 = n^2/4$ so $f(n) \geq c \cdot af(n/b)$ for $c > 1$. Thus the root node dominates and so $T(n) = \Theta(n^2)$

(b) Solve the following recurrence $T(n) = 5T(n-1) - 6T(n-2)$. Give the solution in general form i.e. do not solve for the constants. Solution: The annihilator is $L^2 - 5L + 6$ which factors to $(L - 3)(L - 2)$. This implies that the general solution is $T(n) = c_1(3)^n + c_2(2)^n$
(c) Consider the recurrence $T(n) = 2^{\log T(n/2)} + T(n/2)$, where $T(1) = 1$

Use induction to prove that $T(n) = O(n)$. Don’t forget to write down precisely what you are trying to prove and to include the base case, inductive hypothesis and inductive step.

Solution: Goal: Show there exist constants n_0 and c such that for $n \geq n_0$, $T(n) \leq cn$.

B.C.: $T(1) = 1 \leq cn$ for $c = 1$.

I.H.: For all $j < n$, $T(j) \leq cn$.

I.S.

\[
T(n) = 2^{\log T(n/2)} + T(n/2) \\
\leq 2^{\log cn/2} + c(n/2) \\
= cn
\]

Where the last step holds for $c = 2$, $n_0 = 1$, and the second step holds by the I.H.
3. PARTITION

In the PARTITION problem, you are given a list of \(n \) integers, \(x_1, x_2, \ldots, x_n \) all in the range 1 to \(k \). You want to determine if there is some subset of the integers that sums to exactly \(S/2 \), where \(S \) is the sum of all the integers in the list.

(a) Give an efficient algorithm to solve this problem and analyze your algorithm. Hint: Let
\[
f(i, y) = 1 \text{ if there is some subset of the first } i \text{ integers that sums exactly to } y \text{ and let it be } 0 \text{ otherwise.}
\]
Solution: Let \(f(i, y) = 1 \) if there is some subset of the first \(i \) integers that sums exactly to \(y \) and let it be 0 otherwise. Then we can solve this using dynamic programming. The base case is \(f(1, x_1) = 1 \) and \(f(1, 0) = 1 \) and \(f(1, y) = 0 \) for all other values \(y \). The recurrence is \(f(i, y) = 1 \) if and only if \(f(i - 1, y) = 1 \) or \(f(i - 1, y - x_i) = 1 \). At the end, we return true if \(f(n, S/2) = 1 \) and false otherwise. We can solve this recurrence by filling in a table top down from left to right. The runtime is \(O(nS) \). Since \(S \) is no more than \(nk \), this runtime is \(O(n^2k) \)
(b) The PARTITION problem is NP-Hard. Explain how this fact reconciles with your ability to devise an efficient algorithm above. Hint: This answer is no more than two sentences. Solution: The runtime of the above algorithm is exponential in the input size for large k. In particular, it takes only $\log k$ bits to represent an integer k, but the algorithm has runtime which is not polynomial in $\log k$ but is rather polynomial in k.
4. Minimum Spanning Trees

Suppose you are given a connected graph $G = (V,E)$ with n nodes and m edges. Professor Bunyan claims that an edge $e = (u,v)$ is in a minimum spanning tree of G if there is no path from u to v in G that consists only of edges that have weight cheaper than e. Is Professor Bunyan correct? If so, prove it. If not, give a counter example.

Hint: Think about the safe-edge theorem.

Solution: The statement is true. To prove it, consider the following cut. Let S be the set of all nodes that can be reached from u using edges that are cheaper than e. Consider the cut $(S,V-S)$. If we let $A = \emptyset$, then this cut respects A and moreover, by construction, e is a light edge crossing this cut. Thus e is safe for A and so e is in some MST.
5. **Independent Set**

Recall that an Independent Set for a graph $G = (V, E)$ is a set of vertices V' such that no pair of vertices in V' have an edge between them in G. In the problem INDEPENDENT-SET, you are given a graph G, and an integer k and must output TRUE if there is an independent set of size k in G and FALSE otherwise.

(a) Imagine you have a polynomial time algorithm that solves INDEPENDENT-SET. Show that you can use this algorithm to create a polynomial-time algorithm that takes as input a graph G and integer k and actually outputs an independent set of size k if it exists.

Hint: You will need to make multiple calls to the algorithm that solves INDEPENDENT-SET, essentially one for each vertex in G.

Solution: The key idea here is to note that all nodes that are not in the set V' can be connected to all other nodes in G and this will not effect the size of the independent set. If $k = 1$ then just output an arbitrary vertex in G (any will do). Otherwise, let $n = |V|$. Iterate through each node v in G and do the following. Add edges between v and all other nodes, check to see if there is an independent set of size k in this new graph. If so, leave the new edges, if not, delete the new edges. Finally, return the set of all nodes with degree less than $n - 1$. This is an independent set of size at least k.
Now you will describe an approximation algorithm for the independent set problem.

(b) If the minimum vertex cover of a graph G is of size x, what is the size of the maximum independent set? Assume that G has n nodes and m edges.

Solution: $n-x$ (as discussed in class)

(c) Assume the smallest vertex cover of G is less than or equal to $n/4$. Describe a good polynomial time approximation algorithm for finding the maximum independent set of G.

Solution: The algorithm is simple: Use the 2-approximation for vertex cover that we described in class. Return all the nodes in G that are not in this vertex cover as the independent set. Analysis: Let x be the size of the minimum vertex cover. Then the approximation algorithm for vertex cover will find a vertex cover of size no more than $2x$. This means that the independent set returned will be of size at least $n-2x$, whereas the largest independent set is of size $n-x$. The approximation ratio is thus $\frac{n-2x}{n-x}$. This ratio is minimized if x is as large as possible, but $x \leq n/4$ by assumption. Thus, the approximation ratio is $2/3$. In other words, we can find an independent set of size $2/3$ of the largest independent set provided that the vertex cover of G is no more than $n/4$. Moreover this algorithm takes polynomial time (in fact linear time in the number of edges and vertices).
5. Independent Set, continued.