Final Examination
CS 362 Data Structures and Algorithms
Spring, 2008

Name:
Email:

- Print your name and email, neatly in the space provided above; print your name at the upper right corner of every page. Please print legibly.
- This is an closed book exam. You are permitted to use only two pages of “cheat sheets” that you have brought to the exam and a calculator. Nothing else is permitted.
- Do all the problems in this booklet. Show your work! You will not get partial credit if we cannot figure out how you arrived at your answer.
- Write your answers in the space provided for the corresponding problem. Let us know if you need more paper.
- Don’t spend too much time on any single problem. The questions are weighted equally. If you get stuck, move on to something else and come back later.
- If any question is unclear, ask us for clarification.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
<th>Grader</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Short Answer

(a) Assume there is some function foo that has amortized cost of $O(\log n)$. If foo is called n times in a row, what is the maximum cost of any single call to foo in this sequence of calls?

(b) Consider the following problem. You are given a connected graph G with n nodes and m edges. You want to remove as many edges as possible and still keep the graph connected.

- How many edges must remain in the graph in order to ensure that G is connected?

- Give an efficient algorithm to solve the problem
(c) Assume you have a sorting algorithm that runs in linear time worst case (obviously this would have to be a non-comparison based sorting algorithm). If you use this new sorting algorithm, what will be the new asymptotic run time of Kruskal’s on a graph with \(n \) nodes and \(m \) edges? Assume the amortized cost of all operations on the union-find data structure is \(\log^* n \). Justify your answer.

(d) Assume you are given as input a directed graph without cycles (this is commonly called a directed acyclic graph or DAG for short), and a special source vertex in this graph that has no in-edges. All other vertices in the graph have in-edges, and the edges on the graph have both positive and negative weights. How quickly can you find the longest path in this graph? Justify your answer.

Hint: This is easy if you use an algorithm from class in the correct way.
2. Recurrences and Asymptotics

(a) Give an asymptotic solution for the following recurrence: \(T(n) = 2T(n/2) + n^2 \)

(b) Solve the following recurrence \(T(n) = 5T(n - 1) - 6T(n - 2) \). Give the solution in general form i.e. do not solve for the constants.
(c) Consider the recurrence $T(n) = 2^\log T(n/2) + T(n/2)$, where $T(1) = 1$
Use induction to prove that $T(n) = O(n)$. Don’t forget to write down precisely what you are trying to prove and to include the base case, inductive hypothesis and inductive step.
3. PARTITION

In the PARTITION problem, you are given a list of \(n \) integers, \(x_1, x_2, \ldots, x_n \) all in the range 1 to \(k \). You want to determine if there is some subset of the integers that sums to exactly \(S/2 \), where \(S \) is the sum of all the integers in the list.

(a) Give an efficient algorithm to solve this problem and analyze your algorithm. Hint: Let \(f(i, y) = 1 \) if there is some subset of the first \(i \) integers that sums exactly to \(y \) and let it be 0 otherwise.
(b) The PARTITION problem is NP-Hard. Explain how this fact reconciles with your ability to devise an efficient algorithm above. Hint: This answer is no more than two sentences.
4. Minimum Spanning Trees

Suppose you are given a connected graph $G = (V, E)$ with n nodes and m edges. Professor Bunyan claims that an edge $e = (u, v)$ is in a minimum spanning tree of G if there is no path from u to v in G that consists only of edges that have weight cheaper than e. Is Professor Bunyan correct? If so, prove it. If not, give a counter example.

Hint: Think about the safe-edge theorem.
5. **Independent Set**

Recall that an Independent Set for a graph $G = (V, E)$ is a set of vertices V' such that no pair of vertices in V' have an edge between them in G. In the problem INDEPENDENT-SET, you are given a graph G, and an integer k and must output TRUE if there is an independent set of size k in G and FALSE otherwise.

(a) Imagine you have a polynomial time algorithm that solves INDEPENDENT-SET. Show that you can use this algorithm to create a polynomial-time algorithm that takes as input a graph G and integer k and actually outputs an independent set of size k if it exists.

Hint: You will need to make multiple calls to the algorithm that solves INDEPENDENT-SET, essentially one for each vertex in G.
Now you will describe an approximation algorithm for the independent set problem.

(b) If the minimum vertex cover of a graph G is of size x, what is the size of the maximum independent set? Assume that G has n nodes and m edges.

(c) Assume the smallest vertex cover of G is less than or equal to $n/4$. Describe a good polynomial time approximation algorithm for finding the maximum independent set of G.
5. Independent Set, continued.