Today's Outline

• Dynamic Tables

Pseudocode

Table-Insert(T,x){
 if (T.size == 0){allocate T with 1 slot;T.size=1}
 if (T.num == T.size){
 allocate newTable with 2*T.size slots;
 insert all items in T.table into newTable;
 T.table = newTable;
 T.size = 2*T.size
 }
 T.table[T.num] = x;
 T.num++
}

Potential Method

• Let's now analyze Table-Insert using the potential method
• Let num_i be the num value for the i-th call to Table-Insert
• Let $size_i$ be the size value for the i-th call to Table-Insert
• Then let

$$\Phi_i = 2 \times num_i - size_i$$
In Class Exercise

Recall that $a_i = c_i + \Phi_i - \Phi_{i-1}$

- Show that this potential function is 0 initially and always nonnegative
- Compute a_i for the case where Table-Insert does not trigger an expansion
- Compute a_i for the case where Table-Insert does trigger an expansion (note that $num_{i-1} = num_i - 1$, $size_{i-1} = num_i - 1$, $size_i = 2 \times (num_i - 1)$)

Table Delete

- We’ve shown that a Table-Insert has $O(1)$ amortized cost
- To implement Table-Delete, it is enough to remove (or zero out) the specified item from the table
- However it is also desirable to contract the table when the load factor gets too small
- Storage for old table can then be freed to the heap

Desirable Properties

We want to preserve two properties:

- the load factor of the dynamic table is lower bounded by some constant
- the amortized cost of a table operation is bounded above by a constant

Naive Strategy

- A natural strategy for expansion and contraction is to double table size when an item is inserted into a full table and halve the size when a deletion would cause the table to become less than half full
- This strategy guarantees that load factor of table never drops below $1/2$
D’Oh

• Unfortunately this strategy can cause amortized cost of an operation to be large
• Assume we perform \(n \) operations where \(n \) is a power of 2
• The first \(n/2 \) operations are insertions
• At the end of this, \(T.num = T.size = n/2 \)
• Now the remaining \(n/2 \) operations are as follows:
 \[I, D, D, I, I, D, D, I, I, \ldots \]
 where \(I \) represents an insertion and \(D \) represents a deletion

Analysis

• Note that the first insertion causes an expansion
• The two following deletions cause a contraction
• The next two insertions cause an expansion again, etc., etc.
• The cost of each expansion and deletion is \(\Theta(n) \) and there are \(\Theta(n) \) of them
• Thus the total cost of \(n \) operations is \(\Theta(n^2) \) and so the amortized cost per operation is \(\Theta(n) \)

The Solution

• The Problem: After an expansion, we don’t perform enough deletions to pay for the contraction (and vice versa)
• The Solution: We allow the load factor to drop below \(1/2 \)
• In particular, halve the table size when a deletion causes the table to be less than \(1/4 \) full
• We can now create a potential function to show that Insertion and Deletion are fast in an amortized sense

Recall: Load Factor

• For a nonempty table \(T \), we define the “load factor” of \(T \), \(\alpha(T) \), to be the number of items stored in the table divided by the size (number of slots) of the table
• We assign an empty table (one with no items) size 0 and load factor of 1
• Note that the load factor of any table is always between 0 and 1
• Further if we can say that the load factor of a table is always at least some constant \(c \), then the unused space in the table is never more than \(1 - c \)
The Potential

\[\Phi(t) = \begin{cases}
2 \cdot T.num - T.size & \text{if } \alpha(T) \geq 1/2 \\
T.size/2 - T.num & \text{if } \alpha(T) < 1/2
\end{cases} \]

- Note that this potential is legal since \(\Phi(0) = 0 \) and (you can prove that) \(\Phi(i) \geq 0 \) for all \(i \)

Intuition

- Note that when \(\alpha = 1/2 \), the potential is 0
- When the load factor is 1 (\(T.size = T.num \)), \(\Phi(T) = T.num \), so the potential can pay for an expansion
- When the load factor is 1/4, \(T.size = 4 \cdot T.num \), which means \(\Phi(T) = T.num \), so the potential can pay for a contraction if an item is deleted

Analysis

- Let’s now roll up our sleeves and show that the amortized costs of insertions and deletions are small
- We’ll do this by case analysis
- Let \(num_i \) be the number of items in the table after the \(i \)-th operation, \(size_i \) be the size of the table after the \(i \)-th operation, and \(\alpha_i \) denote the load factor after the \(i \)-th operation

Table Insert

- If \(\alpha_{i-1} \geq 1/2 \), analysis is identical to the analysis done in the In-Class Exercise - amortized cost per operation is 3
- If \(\alpha_{i-1} < 1/2 \), the table will not expand as a result of the operation
- There are two subcases when \(\alpha_{i-1} < 1/2 \): 1) \(\alpha_i < 1/2 \) 2) \(\alpha_i \geq 1/2 \)
\(\alpha_i < 1/2 \)

- In this case, we have
 \[
 a_i = c_i + \Phi_i - \Phi_{i-1} \\
 = 1 + (\text{size}_i/2 - \text{num}_i) - (\text{size}_{i-1}/2 - \text{num}_{i-1}) \\
 = 1 + (\text{size}_i/2 - \text{num}_i) - (\text{size}_i/2 - (\text{num}_i - 1)) \\
 = 0
 \]

\(\alpha_i \geq 1/2 \)

\[
\begin{align*}
 a_i &= c_i + \Phi_i - \Phi_{i-1} \\
 &= 1 + (2 \times \text{num}_{i-1} - \text{size}_i) - (\text{size}_{i-1}/2 - \text{num}_{i-1}) \\
 &= 1 + (2 \times (\text{num}_{i-1} + 1) - \text{size}_{i-1}) - (\text{size}_{i-1}/2 - \text{num}_{i-1}) \\
 &= 3 \times \text{num}_{i-1} - \frac{3}{2} \text{size}_{i-1} + 3 \\
 &= 3 \times \alpha_{i-1} \times \text{size}_{i-1} - \frac{3}{2} \text{size}_{i-1} + 3 \\
 &< 3 \times \text{size}_{i-1} - \frac{3}{2} \text{size}_{i-1} + 3 \\
 &= 3
\end{align*}
\]

Take Away

- So we've just show that in all cases, the amortized cost of an insertion is 3
- We did this by case analysis
- What remains to be shown is that the amortized cost of deletion is small
- We'll also do this by case analysis

Deletions

- For deletions, \(\text{num}_i = \text{num}_{i-1} - 1 \)
- We will look at two main cases: 1) \(\alpha_{i-1} < 1/2 \) and 2) \(\alpha_{i-1} \geq 1/2 \)
- For the case where \(\alpha_{i-1} < 1/2 \), there are two subcases: 1a) the \(i \)-th operation does not cause a contraction and 1b) the \(i \)-th operation does cause a contraction
Case 1a

• If $\alpha_{i-1} < 1/2$ and the i-th operation does not cause a contraction, we know $size_i = size_{i-1}$ and we have:

\[
a_i = c_i + \Phi_i - \Phi_{i-1} = 1 + \left(\frac{size_i}{2} - num_i\right) - \left(\frac{size_{i-1}}{2} - num_{i-1}\right) = 1 + \left(\frac{size_i}{2} - num_i\right) - \left(\frac{size_{i-1}}{2} - num_{i-1}\right) = 2
\]

Case 1b

• In this case, $\alpha_{i-1} < 1/2$ and the i-th operation causes a contraction.

• We know that: $c_i = num_i + 1$

• and $size_i/2 = size_{i-1}/4 = num_{i-1} = num_i + 1$. Thus:

\[
a_i = c_i + \Phi_i - \Phi_{i-1} = (num_i + 1) + \left(\frac{size_i}{2} - num_i\right) = (num_i + 1) + ((num_i + 1) - num_i) - ((2num_i + 2) - (num_i + 1)) = 1
\]

Case 2

• In this case, $\alpha_{i-1} \geq 1/2$

• Proving that the amortized cost is constant for this case is left as an exercise to the diligent student

• Hint1: Q: In this case is it possible for the i-th operation to be a contraction? If so, when can this occur? Hint2: Try a case analysis on α_i.

Take Away

• Since we’ve shown that the amortized cost of every operation is at most a constant, we’ve shown that any sequence of n operations on a Dynamic table take $O(n)$ time

• Note that in our scheme, the load factor never drops below 1/4

• This means that we also never have more than 3/4 of the table that is just empty space
Disjoint Sets

- A disjoint set data structure maintains a collection \(\{S_1, S_2, \ldots, S_k\} \)
 of disjoint dynamic sets
- Each set is identified by a representative which is a member
 of that set
- Let’s call the members of the sets objects.

Operations

We want to support the following operations:

- **Make-Set(\(x\)):** creates a new set whose only member (and representative) is \(x\)
- **Union(\(x, y\)):** unites the sets that contain \(x\) and \(y\) (call them \(S_x\) and \(S_y\)) into a new set that is \(S_x \cup S_y\). The new set is added to the data structure while \(S_x\) and \(S_y\) are deleted. The representative of the new set is any member of the set.
- **Find-Set(\(x\)):** Returns a pointer to the representative of the (unique) set containing \(x\)

Analysis

- We will analyze this data structure in terms of two parameters:
 1. \(n\), the number of Make-Set operations
 2. \(m\), the total number of Make-Set, Union, and Find-Set operations
- Since the sets are always disjoint, each Union operation reduces the number of sets by 1
- So after \(n - 1\) Union operations, only one set remains
- Thus the number of Union operations is at most \(n - 1\)
- Note also that since the Make-Set operations are included in the total number of operations, we know that \(m \geq n\)
- We will in general assume that the Make-Set operations are the first \(n\) performed
• Consider a simplified version of Myspace
• Every person is an object and every set represents a social clique
• Whenever a person in the set S_1 forges a link to a person in the set S_2, then we want to create a new larger social clique $S_1 \cup S_2$ (and delete S_1 and S_2)
• We might also want to find a representative of each set, to make it easy to search through the set
• For obvious reasons, we want these operation of Union, Make-Set and Find-Set to be as fast as possible