
CS 362, Lecture 17

Jared Saia

University of New Mexico

Today’s Outline

• Prim’s Algorithm

• Breadth First Search

• Depth First Search

1

Prim’s Algorithm

• In Prim’s algorithm, the set A maintained by the algorithm

forms a single tree.

• The tree starts from an arbitrary root vertex and grows until

it spans all the vertices in V

• At each step, a light edge is added to the tree A which

connects A to an isolated vertex of GA = (V, A)

• By our Corollary, this rule adds only safe edges to A, so when

the algorithm terminates, it will return a MST

2

Example Run

Runtime?

• The runtime fo the Kruskal’s alg. will depend on the imple-
mentation of the disjoint-set data structure. We’ll assume
the implementation with union-by-rank and path-compression
which we showed has amortized cost of log∗ n

20

Runtime?

• Time to sort the edges is O(|E| log |E|)
• Total amount of time for the |V | Make-Sets and up to |E|

Set-Unions is O((|V | + |E|) log∗ |V |)
• Since G is connected, |E| ≥ |V |−1 and so O((|V |+|E|) log∗ |V |) =

O(|E| log∗ |V |) = O(|E| log |E|)
• Total amount of additional work done in the for loop is just

O(E)
• Thus total runtime of the algorithm is O(|E| log |E|)
• Since |E| ≤ |V |2, we can rewrite this as O(|E| log |V |)

21

Prim’s Algorithm

• In Prim’s algorithm, the set A maintained by the algorithm
forms a single tree.

• The tree starts from an arbitrary root vertex and grows until
it spans all the vertices in V

• At each step, a light edge is added to the tree A which
connects A to an isolated vertex of GA = (V, A)

• By our Corollary, this rule adds only safe edges to A, so when
the algorithm terminates, it will return a MST

22

Example Run

8 5

10

2 3

18 16

12

14

30

4 26

18

8 5

10

2 3

16

12

14

30

26

8 5

10

2 3

18 16

30

26

8 5

10

3

16

30

26

8 5

16

30

26

16

30

26

Prim’s algorithm run on the example graph, starting with the
bottom vertex.

At each stage, thick edges are in A, an arrow points along A’s
safe edge, and dashed edges are useless.

23

Prim’s algorithm run on the example graph, starting with the

bottom vertex.

At each stage, thick edges are in A, an arrow points along A’s

safe edge, and dashed edges are useless.

3

An Implementation

• To implement Prim’s algorithm, we keep all edges adjacent

to A in a heap

• When we pull the minimum-weight edge off the heap, we

first check to see if both its endpoints are in A

• If not, we add the edge to A and then add the neighboring

edges to the heap

• If we implement Prim’s algorithm this way, its running time

is O(|E| log |E|) = O(|E| log |V |)
• However, we can do better

4

Prim’s Algorithm

• We can speed things up by noticing that the algorithm visits

each vertex only once

• Rather than keeping the edges in the heap, we will keep a

heap of vertices, where the key of each vertex v is the weight

of the minimum-weight edge between v and A (or infinity if

there is no such edge)

• Each time we add a new edge to A, we may need to decrease

the key of some neighboring vertices

5

Prim’s

We will break up the algorithm into two parts, Prim-Init and

Prim-Loop

Prim(V,E,s){

Prim-Init(V,E,s);

Prim-Loop(V,E,s);

}

6

Prim-Init

Prim-Init(V,E,s){

for each vertex v in V - {s}{

if ((v,s) is in E){

edge(v) = (v,s);

key(v) = w((v,s));

}else{

edge(v) = NULL;

key(v) = infinity;

}

}

Heap-Insert(v);

}

7

Prim-Loop

Prim-Loop(V,E,s){

A = {};

for (i = 1 to |V| - 1){

v = Heap-ExtractMin();

add edge(v) to A;

for (each edge (u,v) in E){

if (u is not in A AND key(u) > w(u,v)){

edge(u) = (u,v);

Heap-DecreaseKey(u,w(u,v));

}

}

}

return A;

}

8

Runtime?

• The runtime of Prim’s is dominated by the cost of the heap

operations Insert, ExtractMin and DecreaseKey

• Insert and ExtractMin are each called O(|V |) times

• DecreaseKey is called O(|E|) times, at most twice for each

edge

• If we use a Fibonacci Heap, the amortized costs of Insert and

DecreaseKey is O(1) and the amortized cost of ExtractMin

is O(log |V |)
• Thus the overall run time of Prim’s is O(|E|+ |V | log |V |)
• This is faster than Kruskal’s unless E = O(|V |)

9

Note

• This analysis assumes that it is fast to find all the edges that

are incident to a given vertex

• We have not yet discussed how we can do this

• This brings us to a discussion of how to represent a graph in

a computer

10

Graph Representation

There are two common data structures used to explicity repre-

sent graphs

• Adjacency Matrices

• Adjacency Lists

11

Adjacency Matrix

• The adjacency matrix of a graph G is a |V | × |V | matrix of

0’s and 1’s

• For an adjacency matrix A, the entry A[i, j] is 1 if (i, j) ∈ E

and 0 otherwise

• For undirectd graphs, the adjacency matrix is always sym-

metric: A[i, j] = A[j, i]. Also the diagonal elements A[i, i] are

all zeros

12

Example Graph

Adjacency Matrix

• The adjacency matrix of a graph G is a |V | × |V | matrix of
0’s and 1’s

• For an adjacency matrix A, the entry A[i, j] is 1 if (i, j) ∈ E

and 0 otherwise
• For undirectd graphs, the adjacency matrix is always sym-

metric: A[i, j] = A[j, i]. Also the diagonal elements A[i, i] are
all zeros

32

Example Graph

a

b

e

d

f g

h

ic

33

Example Representations

a b c d e f g h i
a 011000000
b 101110000
c 110110000
d 011011000
e 011101000
f 000110000
g 000000010
h 000000101
i 000000110

a

b

c

d

e

f

g

h

i

d

d

d

e

e

e

f

f

a

b

b

b

a

d

g

g

h

c

c

c

c

b

e

h

i

i

Adjacency matrix and adjacency list representations for the
example graph.

34

Adjacency Matrix

• Given an adjacency matrix, we can decide in Θ(1) time
whether two vertices are connected by an edge.

• We can also list all the neighbors of a vertex in Θ(|V |) time
by scanning the row corresponding to that vertex

• This is optimal in the worst case, however if a vertex has few
neighbors, we still need to examine every entry in the row to
find them all

• Also, adjacency matrices require Θ(|V |2) space, regardless of
how many edges the graph has, so it is only space efficient
for very dense graphs

35

13

Example Representations

a b c d e f g h i
a 011000000
b 101110000
c 110110000
d 011011000
e 011101000
f 000110000
g 000000010
h 000000101
i 000000110

Adjacency matrix and adjacency list representations for the

example graph.

14

Adjacency Matrix

• Given an adjacency matrix, we can decide in Θ(1) time

whether two vertices are connected by an edge.

• We can also list all the neighbors of a vertex in Θ(|V |) time

by scanning the row corresponding to that vertex

• This is optimal in the worst case, however if a vertex has few

neighbors, we still need to examine every entry in the row to

find them all

• Also, adjacency matrices require Θ(|V |2) space, regardless of

how many edges the graph has, so it is only space efficient

for very dense graphs

15

Adjacency Lists

• For sparse graphs — graphs with relatively few edges —

we’re better off with adjacency lists

• An adjacency list is an array of linked lists, one list per vertex

• Each linked list stores the neighbors of the corresponding

vertex

16

Adjacency Lists

• The total space required for an adjacency list is O(|V |+ |E|)
• Listing all the neighbors of a node v takes O(1+deg(v)) time

• We can determine if (u, v) is an edge in O(1 + deg(u)) time

by scanning the neighbor list of u

• Note that we can speed things up by storing the neighbors

of a node not in lists but rather in hash tables

• Then we can determine if an edge is in the graph in expected

O(1) time and still list all the neighbors of a node v in O(1+

deg(v)) time

17

Take Away

• If we use the right type of heap and the right graph repre-

sentation, then Prim’s algorithm takes O(|E|+ |V | log |V |)
• This compares favorably with Kruskal’s algorithm which takes

O(|E| log |V |)
• Kruskal’s and Prims algorithms are the two main algorithms

for finding the minimum spanning tree of a connected graph

• There are many, many other types of problems defined on

graphs . . .

18

Traversing a Graph

• Suppose we want to visit every node in a connected graph

(represented either explicitly or implicitly)

• The simplest way to do this is an algorithm called depth-first

search

• We can write this algorithm recursively or iteratively - it’s the

same both ways, the iterative version just makes the stack

explicit

• Both versions of the algorithm are initially passed a source

vertex v

19

Recursive DFS

RecursiveDFS(v){

if (v is unmarked){

mark v;

for each edge (v,w){

RecursiveDFS(w);

}

}

}

20

Iterative DFS

IterativeDFS(s){

Push(s);

while (stack not empty){

v = Pop();

if (v is unmarked){

mark v;

for each edge (v,w){

Push(w);

}

}

}

}

21

Generic Traverse

• DFS is one instance of a general family of graph traversal

algorithms

• This generic graph traversal algorithm stores a set of candi-

date edges in a data structure we’ll call a “bag”

• A “bag” is just something we can put stuff into and later

take stuff out of - stacks, queues and heaps are all examples

of bags.

22

Generic Traverse

Traverse(s){

put (nil,s) in bag;

while (the bag is not empty){

take some edge (p,v) from the bag

if (v is unmarked)

mark v;

parent(v) = p;

for each edge (v,w){

put (v,w) into the bag;

}

}

}

}

23

Analysis

• Notice that we’re keeping edges in the bag instead of vertices

• This is because we want to remember when we visit vertex v

for the first time, which previously-visited vertex p put v into

the bag

• This vertex p is called the parent of v

24

Lemma

• Traverse(s) marks each vertex in a connected graph exactly

once, and the set of edges (v, parent(v)), with parent(v) not

nil, form a spanning tree of the graph.

25

Proof

• It’s obvious that no node is marked more than once

• We next show that each vertex is marked at least once.

• Let v 6= s be a vertex and let s → · · · → u → v be the path

from s to v with the minimum number of edges. (Since the

graph is connected such a path always exists)

• If the algorithm marks u, then it must put (u, v) in the bag,

so it must later take (u, v) out of the bag, at which point v

must be marked

• Thus by induction on the shortest-path distance from s, the

algorithm marks every vertex in the graph

26

Proof

• Call an edge (v, parent(v)) with parent(v) 6= nil a parent edge

• It now remains to be shown that the parent edges form a

spanning tree of the graph

• For any node v, the path of parent edges v → parent(v) →
parent(parent(v)) → · · · eventually leads back to s, so the set

of parent edges form a connected graph.

• Since every node except s has a unique parent edge, the

total number of parent edges is exactly one less than the

total number of vertices

• Thus the parent edges form a spanning tree (we’ll show this

in the in-class exercise)

27

DFS and BFS

• If we implement the “bag” by using a stack, we have Depth

First Search

• If we implement the “bag” by using a queue, we have Breadth

First Search

28

Analysis

• Note that if we use adjacency lists for the graph, the overhead

for the “for” loop is only a constant per edge (no matter how

we implement the bag)

• If we implement the bag using either stacks or queues, each

operation on the bag takes constant time

• Hence the overall runtime is O(|V |+ |E|) = O(|E|)

29

DFS vs BFS

• Note that DFS trees tend to be long and skinny while BFS

trees are short and fat

• In addition, the BFS tree contains shortest paths from the

start vertex s to every other vertex in its connected compo-

nent. (here we define the length of a path to be the number

of edges in the path)

30

Final Note

• Now assume the edges are weighted

• If we implement the “bag” using a priority queue, always

extracting the minimum weight edge from the bag, then we

have a version of Prim’s algorithm

• Each extraction from the “bag” now takes O(|E|) time so

the total running time is O(|V |+ |E| log |E|)

31

Example

Analysis

• Note that if we use adjacency lists for the graph, the overhead
for the “for” loop is only a constant per edge (no matter how
we implement the bag)

• If we implement the bag using either stacks or queues, each
operation on the bag takes constant time

• Hence the overall runtime is O(|V | + |E|) = O(|E|)

4

DFS vs BFS

• Note that DFS trees tend to be long and skinny while BFS
trees are short and fat

• In addition, the BFS tree contains shortest paths from the
start vertex s to every other vertex in its connected compo-
nent. (here we define the length of a path to be the number
of edges in the path)

5

Final Note

• Now assume the edges are weighted
• If we implement the “bag” using a priority queue, always

extracting the minimum weight edge from the bag, then we
have a version of Prim’s algorithm

• Each extraction from the “bag” now takes O(|E|) time so
the total running time is O(|V | + |E| log |E|)

6

Example

a

b

e

d

f

c

a

b

e

d

f

c

A depth-first spanning tree and a breadth-first spanning tree
of one component of the example graph, with start vertex a.

7

A depth-first spanning tree and a breadth-first spanning tree

of one component of the example graph, with start vertex a.

32

In Class Exercise

• Consider a connected graph G = (V, E) that has n vertices

and n− 1 edges where n > 1. First we will prove that G has

at least one vertex with degree 1

• Q: What is ∑
v∈V

deg(v)

• Q: Is it possible for each vertex to have degree ≥ 2? Why or

why not?

• Q: Now show that there must be at least one vertex that

has degree 1

33

In Class Exercise

• Consider a connected graph that has n vertices and n − 1

edges. Prove by induction on n that such a graph is a tree.

• Q: What is the base case?

• Q: What is the inductive hypothesis?

• Q: What is the inductive step?

34

