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cannot figure out how you arrived at your answer.

Write your answers in the space provided for the corresponding problem. Let us know if you
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you get stuck, move on to something else and come back later.

If any question is unclear, ask us for clarification.
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1. Short Answer

For each of the questions below, please give the answer in terms of theta notation. Circle
your final answer.

(a) Amount of time necessary to solve the 0-1 knapsack problem using dynamic programming
when there are n items and the capacity of the knapsack is W. Solution: ©(nW)

(b) In the analysis we went over in class on the union find data structure with path compres-
sion, number of dollars paid into the leader and child accounts for each call to Find-Set.

Solution: ©(1)

(c) In the analysis we went over in class on the union find data structure with path compres-
sion, number of dollars paid into the block and path accounts over n calls to Find-Set.
Solution: ©(nlog*n)

(d) Solution to the recurrence T'(n) = 8T(n/2) + v/n Solution: ©(n3)

(e) Solution to the recurrence T'(n) = T'(n — 1) + 1 Solution: The annihilator is (L — 1)
for the homogeneous part and (L — 1) for the non-homogeneous part so the solution is
con + ¢1 which is ©(n)

(f) Solution to the recurrence T'(n) = 4T (n — 1) — 3T (n — 2) + 1 Solution: The annihilator
is (L —3)(L —1)(L — 1) so the solution is co * 3" + cin + co which is ©(3"

True or False (10 points total). Circle your final answers.

(a) If an operation takes O(1) expected time, then it takes O(1) amortized time Solution:
False. Amortized time is a worst case bound over a sequence of operations. Expected
time is just a probabilistic bound.

(b) Any problem that can be solved with a greedy algorithm can also be solved with recursive
algorithm Solution: True

(c) logn is o(n°) Solution: True. Use L’Hopitals to show this.
(d) logn is w(loglogn) Solution: True. logn grows asymptotically faster than loglogn.



2. Induction

Consider the recurrence f(n) = f(n—1)* f(n—1), f(1) = 2. Show using induction that f(n)
is Q(2") Solution: B.C. f(1) =2 > 2! forc=1.

LH. Forallj<mn, f(j)>c2"

I1.S.f(n) = f(n-1)*f(n-1). By the LH., f(n) > c®2" 1 x2"~1 > 2" provided that ¢ > 1.
Thus, if ¢ = 1 and ng = 1, we can say that f(n) > ¢2™ for all n > ny which proves that

f(n) = Q(2").



3. Making Change

Imagine you live in a country where the coin denominations are 1 cent, 4 cents, and 5 cents.
Consider the problem where you are given some value n and you want to make change for
this value, using the smallest number of coins.

Part 1: Show that the greedy algorithm (use the largest value coins first) for making change
fails for these denominations Solution: To make change for 8 cents greedily would require 4
coins (a b cent and 3 1 cents. However, this can be done better with only 2 4 cent coins

Part 2: Describe a dynamic programming algorithm for finding the smallest number of coins
needed in this country to make change for any value of n. Analyze your algorithm. Solution:
Let f(n) be the smallest number of coins needed to make change for n cents. Then f(1) =
f4)=f(B)=1, f(2) =2, f(3) =3 and forn > 5, f(n) = 1+min(f(n—1), f(n—4), f(n—5)).
The dynamic program would just use a single array of length n, fill it in from left to right and
return the value f(n). The total runtime would be O(n).



4. Amortized Analysis

Assume you are creating an array data structure that has a fixed size of n. You want to backup
this array after every so many insertion operations. Unfortunately, the backup operation is
quite expensive, it takes n time to do the backup. Insertions without a backup just take 1
time unit.

Part 1: How frequently can you do a backup and still guarantee that the amortized cost of
insertion is O(1)? Solution: You can backup the array after every n insertions

Part 2: Prove that you can do backups in O(1) amortized time. Use the potential method for
your proof. Solution: Let ¢; =i mod n. Then when i modn =0, a; =n+0—(n—1) = 1.
When i modn # 0, a; =1+ (i mod n) — ((i — 1)) mod n = 2.



5. Recurrences

In this problem, you will use recurrence relations to analyze an interesting magic trick. The
trick is done as follows. Choose any two integers and write them one after another. Now form
a third number by subtracting the first number from 5/2 times the second number. Form
a fourth number by subtracting the second from 5/2 times the third, etc. until you have a
sequence of twenty numbers. Now divide the twentieth number by the nineteenth. The value
you get should be very close to 2. Can you explain why this trick works? Hint: Write down
a recurrence relation f(n) for the n-th number in the sequence. Now get the general solution
to this recurrence relation using annihilators. Next, figure out what is a good approximation
to this solution for large n.

Solution: f(n) = 5/2 % f(n — 1) — f(n — 2). The annihilator for this is L* — 5/2L + 1.
Factoring, this we get (L — 2)(£ — 1/2). This means f(n) = 12" + co(1/2)™. For large
n, a good approximation is that f(n) = ¢12". Thus the ratio f(n)/f(n — 1) approached
c12"/c12" 1 =2 as n gets large (provided that c; # 0.



