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1. Short Answer (2 points each)

Answer the following questions using the simplest possible Θ notation. Assume as usual, that
f(n) is Θ(1) for constant values of n.

(a) Solution to the recurrence T (n) = T (n− 1) + 2?

(b) Expected number of nodes in a skip list storing n items?

(c) Solution to the recurrence T (n) = 4T (n/4) + n?

(d) Solution to the recurrence: f(n) = 2f(n− 1)− f(n− 2) + 1.

(e) Time to determine if a graph with n nodes and m edges has a 5-clique?



(f) A stack has standard push and pop operations, and also a popLessThan(x) operation
which repeatedly pops the top item off the stack until either the stack is empty or the
top item on the stack has value at least x. Over n calls to push, pop and popLessThan,
what is the worst case cost of any single call?

(g) In the problem above, what is the worst case amortized cost of any operation?

(h) Worst-case runtime of Kruskal’s algorithm when using a union-find data structure where
Make-Set, Find-Set and Union all have amortized cost O(log2 n)? Assume the graph has
n nodes and m edges.

(i) A set of n people schedule vaccination appointments independently and uniformly at
random on n different days. What is the expected number of pairs that will have ap-
pointments on the same day?

(j) What is the best time to solve the activity selection problem if the start and finish times
of all activities are selected independently and uniformly at random from time 0 to some
time T?



2. Proof by Induction

(a) (8 points) Consider the following recurrence relation: f(1) = 2 and f(2) = 4, and for all
n ≥ 3, f(n) = f(n− 1) ∗ f(n− 2). Prove by induction that f(n) ≥ 2n for all n ≥ 1.



(b) (12 points) Consider a new type of s-tree where every node is colored green, black, or
orange, with the follow rules:

• A green node 2 children

• An orange node has 1 child

• A black node has no children.

Example:

Prove, by induction on the number of nodes, n, that this s-tree always has a number of
black nodes that is 1 more than the number of green nodes. Don’t forget to include the
BC, IH, and IS.



3. MIN-4COLORING In the MIN-4COLORING problem, you are given a graph G. In a
4-coloring, each node of G is colored with one of 4 colors. An edge is called satisfied if
both endpoints are colored differently. In MIN-4COLORING, you must output the minimum
number of unsatisfied edges achievable by any 4-coloring.

(a) (5 points) Show that MIN-4COLORING is NP-Hard by a reduction from one of the fol-
lowing: 3-SAT, VERTEX-COVER, SUBGRAPH-ISOMORPHISM, INDEPENDENT-
SET, 3-COLORABLE, 4-COLORABLE, HAMILTONIAN-CYCLE, or CLIQUE.

(b) (7 points) Let m be the number of edges in G. Consider the algorithm that colors each
node independently with a color selected uniformly at random from the 4 colors. Com-
pute the expected number of unsatisfied edges as a function of m for this algorithm using
indicator random variables and linearity of expectation.



(c) (4 points) Use Markov’s inequality and your result from part (b) to bound the proba-
bility that there are at least m/3 unsatisfied edges after running the algorithm in part
(b).

(d) (4 points) Using your result from part (c), bound the expected number of times you
would need to run the algorithm in part (b) before you get a coloring that has less than
m/3 unsatisfied edges. Hint: Recall that for a random variable Y taking on positive
integer values, E(Y ) =

∑∞
i=1 Pr(Y ≥ i) (see slides 18-19 from our “Randomized Data

Structures” lecture).



4. Dynamic Programming and Graphs

In this problem, you are given a directed graph with no directed cycles (often called a directed
acyclic graph (DAG)). This graph G = (V,E) has a special source vertex s with no incoming
edges; and ℓ special sink vertices t1, t2, . . . , tℓ, all of which have no outgoing edges. All edges
are weighted with probabilities that obey the following rules:

• For every edge u → v: 0 ≤ w(u → v) ≤ 1.

• For every node u that is not a sink, the weights on the out edges sum to 1:∑
u→v∈E w(u → v) = 1

The edge weights specify probabilities for a random walk that starts at the source vertex,
s, and ends at one of the sink vertices. In this walk, when at any non-sink vertex u, the
probability of leaving u along edge u → v is given by w(u → v). For example, in the graph
below, when at s, the probability of going to a is 1/3 and the probability of going to b is 2/3.
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(a) (5 points) Describe and analyze an algorithm to compute a least likely path from s to
any sink vertex. In the example graph, your algorithm should return the path s, a, t2.
What is the runtime of your algorithm as a function of n, the number of nodes in the
graph and m, the number of edges?

(b) (5 points) Describe and analyze an algorithm to compute a most likely path from s to
any sink vertex. In the example graph, your algorithm should return the path s, b, t1.
What is the runtime of your algorithm as a function of n, the number of nodes in the
graph and m, the number of edges?



(c) (10 points) Describe and analyze a dynamic program to calculate, for each sink vertex,
the probability that the random walk reaches that vertex. For example, in the figure,
the probability of visiting a is 1/3 and b is 2/3. Thus, the probability of reaching t1 is
1/3∗2/3+2/3∗2/3 = 2/3; and the probability of reaching t2 is 1/3∗1/3+2/3∗1/3 = 1/3.



5. Dynamic Programming - Hard

Assume you are given a string of n numbers S = s1, s2, . . . sn. You want to find the smallest
product of any non-empty substring of these numbers. For example if you are given S =
1, 4,−1,−5, 2, 0,−8,−2, 2, 1 then you should return the value −10 which is the product of
the substring −5, 2.

Clearly, you can solve this with a brute-force algorithm in O(n2) time. To achieve o(n2)
requires clever dynamic programming. You will use 3 functions, defined as follows:

• minEndingAt(i) returns the smallest product of any substring ending at index i

• maxEndingAt(i) returns the largest product of any substring ending at index i

• minUpTo(i) returns the smallest product of any substring ending at index no more than
i

(a) (6 points) Fill in the remaining values for the example sequence in the table below.

S 1 4 -1 -5 2 0 -8 -2 2 1

minEndingAt 1 4 -4 -5 -10

maxEndingAt 1 4 -1 20 40

minUpTo 1 1 -4 -5 -10

(b) (12 points) Write recurrence relations for minEndingAt(i), maxEndingAt(i) and min-
UpTo(i) that can be calculated efficiently to fill in a table like the one above.



(c) (2 points) In 2 sentences describe an efficient dynamic program that uses your recurrences
to solve this problem. What is the run-time of your dynamic program?


