CS 362, Single Source Shortest Paths

Jared Saia
University of New Mexico
Today’s Outline

“*The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and unchanging Name.*” - *Tao Te Ching*

- BFS and DFS
- Single Source Shortest Paths
- Dijkstra’s Algorithm
- Bellman-Ford Algorithm
Generic Traverse

Traverse(s){
 put (nil,s) in bag;
 while (the bag is not empty){
 take some edge (p,v) from the bag
 if (v is unmarked)
 mark v;
 parent(v) = p;
 for each edge (v,w) incident to v{
 put (v,w) into the bag;
 }
 }
 }
}
DFS and BFS

- If we implement the “bag” by using a stack, we have *Depth First Search*
- If we implement the “bag” by using a queue, we have *Breadth First Search*
Analysis

- Note that if we use adjacency lists for the graph, the overhead for the “for” loop is only a constant per edge (no matter how we implement the bag)
- If we implement the bag using either stacks or queues, each operation on the bag takes constant time
- Hence the overall runtime is $O(|V| + |E|) = O(|E|)$
DFS vs BFS

- Note that DFS trees tend to be long and skinny while BFS trees are short and fat
- In addition, the BFS tree contains *shortest paths* from the start vertex \(s \) to every other vertex in its connected component. (here we define the length of a path to be the number of edges in the path)
Final Note

- Now assume the edges are weighted
- If we implement the “bag” using a priority queue, always extracting the minimum weight edge from the bag, then we have a version of Prim’s algorithm
- Each extraction from the “bag” now takes $O(\log |E|)$ time so the total running time is $O(|V| + |E| \log |E|)$
A depth-first spanning tree and a breadth-first spanning tree of one component of the example graph, with start vertex a.

Example
If the graph is disconnected, then Traverse only visits nodes in the connected component of the start vertex \(s \). If we want to visit all vertices, we can use the following “wrapper” around Traverse

\[
\text{TraverseAll}()\
\begin{array}{l}
\text{for all vertices } v\
\text{if (v is unmarked)}\
\text{Traverse(v)}\
\end{array}
\]

DFS and BFS

- Note that we can do DFS and BFS equally well on undirected and directed graphs
- If the graph is undirected, there are two types of edges in G: edges that are in the DFS or BFS tree and edges that are not in this tree
- If the graph is directed, there are several types of edges
DFS in Directed Graphs

- **Tree edges** are edges that are in the tree itself
- **Back edges** are those edges \((u, v)\) connecting a vertex \(u\) to an ancestor \(v\) in the DFS tree
- **Forward edges** are nontree edges \((u, v)\) that connect a vertex \(u\) to a descendant in a DFS tree
- **Cross edges** are all other edges. They go between two vertices where neither vertex is a descendant of the other
Acyclic graphs

- Useful Fact: A directed graph G is acyclic if and only if a DFS of G yields no back edges.
- Challenge: Try to prove this fact.
• BFS and DFS are two useful algorithms for exploring graphs
• Each of these algorithms is an instantiation of the Traverse algorithm. BFS uses a queue to hold the edges and DFS uses a stack
• Each of these algorithms constructs a spanning tree of all the nodes which are reachable from the start node s
Shortest Paths Problem

• Another interesting problem for graphs is that of finding shortest paths
• Assume we are given a weighted directed graph $G = (V, E)$ with two special vertices, a source s and a target t
• We want to find the shortest directed path from s to t
• In other words, we want to find the path p starting at s and ending at t minimizing the function

$$w(p) = \sum_{e \in p} w(e)$$
Example

- Imagine we want to find the fastest way to drive from Albuquerque, NM to Seattle, WA
- We might use a graph whose vertices are cities, edges are roads, weights are driving times, s is Albuquerque and t is Seattle
- The graph is directed since driving times along the same road might be different in different directions (e.g. because of construction, speed traps, etc)
SSSP

- Every algorithm known for solving this problem actually solves the following more general *single source shortest paths* or SSSP problem:
- Find the shortest path from the source vertex s to every other vertex in the graph
- This problem is usually solved by finding a *shortest path tree* rooted at s that contains all the desired shortest paths
Shortest Path Tree

• It’s not hard to see that if the shortest paths are unique, then they form a tree
• To prove this, we need only observe that the sub-paths of shortest paths are themselves shortest paths
• If there are multiple shortest paths to the same vertex, we can always choose just one of them, so that the union of the paths is a tree
• If there are shortest paths to two vertices \(u \) and \(v \) which diverge, then meet, then diverge again, we can modify one of the paths so that the two paths diverge once only.
Example

If \(s \to a \to b \to c \to d \to v \) and \(s \to a \to x \to y \to d \to u \) are both shortest paths,
then \(s \to a \to b \to c \to d \to u \) is also a shortest path.
MST vs SPT

- Note that the minimum spanning tree and shortest path tree can be different.
- For example, there exist graphs which have only one MST, but multiple shortest path trees (one for every source vertex).
Example

A minimum spanning tree (left) and a shortest path tree rooted at the topmost vertex (right).
Negative Weights

- We’ll actually allow negative weights on edges
- The presence of a negative cycle might mean that there is no shortest path
- A shortest path from s to t exists if and only if there is *at least one* path from s to t but no path from s to t that touches a negative cycle
- In the following example, there is no shortest path from s to t
SSSP Algorithms

- We’ll now go over some algorithms for SSSP on directed graphs.
- These algorithms will work for undirected graphs with slight modification
- In particular, we must specifically prohibit alternating back and forth across the same undirected negative-weight edge
- Like for graph traversal, all the SSSP algorithms will be special cases of a single generic algorithm
SSSP Algorithms

Each vertex v in the graph will store two values which describe a *tentative* shortest path from s to v

- $\text{dist}(v)$ is the length of the tentative shortest path between s and v
- $\text{pred}(v)$ is the predecessor of v in this tentative shortest path
- The predecessor pointers automatically define a tentative shortest path tree
Initially we set:

- \(\text{dist}(s) = 0, \text{pred}(s) = \text{NULL} \)
- For every vertex \(v \neq s \), \(\text{dist}(v) = \infty \) and \(\text{pred}(v) = \text{NULL} \)
Relaxation

- We call an edge \((u, v)\) tense if \(\text{dist}(u) + w(u, v) < \text{dist}(v)\)
- If \((u, v)\) is tense, then the tentative shortest path from \(s\) to \(v\) is incorrect since the path \(s\) to \(u\) and then \((u, v)\) is shorter
- Our generic algorithm repeatedly finds a tense edge in the graph and \textit{relaxes} it
- If there are no tense edges, our algorithm is finished and we have our desired shortest path tree
Relax(u,v){
 dist(v) = dist(u) + w(u,v);
 pred(v) = u;
}
Correctness

- The correctness of the relaxation algorithm follows directly from three simple claims
- The run time of the algorithm will depend on the way that we make choices about which edges to relax
Claim 1

- If \(\text{dist}(v) \neq \infty \), then \(\text{dist}(v) \) is the total weight of the predecessor chain ending at \(v \):

\[
s \to \cdots \to \text{pred} \left(\text{pred}(v) \right) \to \text{pred}(v) \to v.
\]

- This is easy to prove by induction on the number of edges in the predecessor chain path from \(s \) to \(v \). (left as an exercise)
Claim 2

- If the algorithm halts, then $\text{dist}(v) \leq w(s \rightsquigarrow v)$ for any path $s \rightsquigarrow v$.
- This is easy to prove by induction on the number of edges in the path $s \rightsquigarrow v$. (left as an exercise)
Claim 3

• The algorithm halts if and only if there is no negative cycle reachable from s.
• The ‘only if’ direction is easy—if there is a reachable negative cycle, then after the first edge in the cycle is relaxed, the cycle always has at least one tense edge.
• The ‘if’ direction follows from the fact that every relaxation step reduces either the number of vertices with $dist(v) = \infty$ by 1 or reduces the sum of the finite shortest path lengths by some positive amount.
Generic SSSP

- We haven’t yet said how to detect which edges can be relaxed or what order to relax them in
- The following Generic SSSP algorithm answers these questions
- We will maintain a “bag” of vertices initially containing just the source vertex \(s \)
- Whenever we take a vertex \(u \) out of the bag, we scan all of its outgoing edges, looking for something to relax
- Whenever we successfully relax an edge \((u,v)\), we put \(v \) in the bag
InitSSSP(s) {
 dist(s) = 0;
 pred(s) = NULL;
 for all vertices v != s {
 dist(v) = infinity;
 pred(v) = NULL;
 }
}
GenericSSSP(s) {
 InitSSSP(s);
 put s in the bag;
 while the bag is not empty{
 take u from the bag;
 for all edges (u,v){
 if (u,v) is tense{
 Relax(u,v);
 put v in the bag;
 }
 }
 }
}
Generic SSSP

- Just as with graph traversal, using different data structures for the bag gives us different algorithms
- Some obvious choices are: a stack, a queue and a heap
- Unfortunately if we use a stack, we need to perform $\Theta(2|E|)$ relaxation steps in the worst case (an exercise for the diligent student)
- The other possibilities are more efficient
Diskstra’s Algorithm

- If we implement the bag as a heap, where the key of a vertex v is $dist(v)$, we obtain Dijkstra’s algorithm.
- Dijkstra’s algorithm does particularly well if the graph has no negative-weight edges.
- In this case, it’s not hard to show (by induction, of course - see next slides) that the vertices are scanned in increasing order of their shortest-path length from s.
- It follows that each vertex is scanned at most once, and thus that each edge is relaxed at most once.
Inductive Proof

- We assume there are no negative edge weights.
- Lemma: (1) Dijkstra’s algorithm scans vertices in increasing order of their shortest path length from s; and (2) before it scans a vertex, the dist value of that vertex is correct i.e. it is the shortest path length from s to that vertex.
- Assume the vertices are labelled $1, 2, \ldots n$ by increasing order of shortest path length from s. We break ties in this sorting the same way that Dijkstra’s breaks ties in removing vertices from the heap.
- We’ll fix a graph G, and show our goal by induction on x, the label of the vertices in the above ordering.
Inductive Proof

- **BC**: \(x = 1 \): Dijkstra’s scans the vertex \(s \) first. \(s \) is the vertex labelled 1 in our sorted list. The dist value of \(s \) is 0.

- **IH**: For all \(j < x \), (1) Dijkstra’s algorithm scans vertices \(1, 2, \ldots, j \) in increasing order of their shortest path length; and (2) the dist values for all these vertices are set correctly when the vertices are scanned.

- **IS**: Consider the vertex labelled \(x \). The vertex \(x \) has a parent in the final shortest path tree that has some label \(p \), where \(p < x \). Since \(p < x \), by the IH: (1) \(p \) was scanned before \(x \); and (2) the dist value of \(p \) was correct when \(p \) was scanned. Hence, when the edge \(p \rightarrow x \) was relaxed, the dist value of \(x \) was set correctly. Thus, \(\text{dist}(x) \) is correct when \(x \) is scanned.

Also, the dist values of vertices with labels more than \(x \) must be greater than or equal to \(\text{dist}(x) \), after vertices \(1, \ldots, x - 1 \) have been scanned, since dist values are at least equal to shortest path lengths. Thus, \(x \) is scanned right after the vertex with label \(x - 1 \).
Dijkstra’s Algorithm Runtime

- Since the key of each vertex in the heap is its tentative distance from s, the algorithm performs a DecreaseKey operation every time an edge is relaxed
- Thus the algorithm performs at most $|E|$ DecreaseKey’s
- Similarly, there are at most $|V|$ Insert and ExtractMin operations
- Thus if we store the vertices in a Fibonacci heap, the total running time of Dijkstra’s algorithm is $O(|E| + |V| \log |V|)$
Negative Edges

- This analysis assumes that no edge has negative weight
- The algorithm given here is still correct if there are negative weight edges but the worst-case run time could be exponential
- The algorithm in our text book gives incorrect results for graphs with negative edges (which they make clear)
Four phases of Dijkstra's algorithm run on a graph with no negative edges. At each phase, the shaded vertices are in the heap, and the bold vertex has just been scanned. The bold edges describe the evolving shortest path tree.
Bellman-Ford

- If we replace the bag in the GenericSSSP with a queue, we get the Bellman-Ford algorithm
- Bellman-Ford is efficient even if there are negative edges and it can be used to quickly detect the presence of negative cycles
- If there are no negative edges, however, Dijkstra’s algorithm is faster than Bellman-Ford
Analysis

- The easiest way to analyze this algorithm is to break the execution into phases.
- Before we begin the alg, we insert a token into the queue.
- Whenever we take the token out of the queue, we begin a new phase by just reinserting the token into the queue.
- The 0-th phase consists entirely of scanning the source vertex.
- The algorithm ends when the queue contains only the token.
Invariant

- A simple inductive argument (left as an exercise) shows the following invariant:
- At the end of the i-th phase, for each vertex v, $\text{dist}(v)$ is less than or equal to the length of the shortest path $s \sim v$ consisting of i or fewer edges
Example

Four phases of Bellman-Ford’s algorithm run on a directed graph with negative edges.

Nodes are taken from the queue in the order

\(s \diamond a \ b \ c \diamond d \ f \ b \diamond a \ e \ d \diamond d \ a \diamond \diamond \), where \(\diamond \) is the token.

Shaded vertices are in the queue at the end of each phase.

The bold edges describe the evolving shortest path tree.
Analysis

- Since a shortest path can only pass through each vertex once, either the algorithm halts before the $|V|$-th phase or the graph contains a negative cycle.
- In each phase, we scan each vertex at most once and so we relax each edge at most once.
- Hence the run time of a single phase is $O(|E|)$.
- Thus, the overall run time of Bellman-Ford is $O(|V||E|)$.
Now that we understand how the phases of Bellman-Ford work, we can simplify the algorithm.

Instead of using a queue to perform a partial BFS in each phase, we will just scan through the adjacency list directly and try to relax every edge in the graph.

This will be much closer to how the textbook presents Bellman-Ford.

The run time will still be $O(|V||E|)$.

To show correctness, we’ll have to show that our earlier invariant holds which can be proved by induction on i.
Book-BF(s) {
 InitSSSP(s);
 repeat |V| times{
 for every edge (u,v) in E{
 if (u,v) is tense{
 Relax(u,v);
 }
 }
 }
 for every edge (u,v) in E{
 if (u,v) is tense, return ‘‘Negative Cycle’’
 }
}
Take Away

- Dijkstra’s algorithm and Bellman-Ford are both variants of the GenericSSSP algorithm for solving SSSP
- Dijkstra’s algorithm uses a Fibonacci heap for the bag while Bellman-Ford uses a queue
- Dijkstra’s algorithm runs in time $O(|E| + |V| \log |V|)$ if there are no negative edges
- Bellman-Ford runs in time $O(|V||E|)$ and can handle negative edges (and detect negative cycles)