Today's Outline

- Administrative Info
- Asymptotic Analysis Review
- Recurrence Relation Review

Formal Defn of Big-O

- Recall the formal definition of Big-O notation:
 - A function \(f(n) \) is \(O(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)

Example

- Let's show that \(f(n) = 10n + 100 \) is \(O(g(n)) \) where \(g(n) = n \)
- We need to give constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)
- In other words, we need constants \(c \) and \(n_0 \) such that \(10n + 100 \leq cn \) for all \(n \geq n_0 \)
Example

- We can solve for appropriate constants:
 \[10n + 100 \leq cn \] (1)
 \[10 + 100/n \leq c \] (2)
- So if \(n > 1 \), then \(c \) should be greater than 110.
- In other words, for all \(n > 1 \), \(10n + 100 \leq 110n \)
- So \(10n + 100 \) is \(O(n) \)

Relatives of big-O

Recall the following relatives of big-O:

- \(O \), \(\leq \)
- \(\Theta \), \(= \)
- \(\Omega \), \(\geq \)
- \(o \), \(< \)
- \(\omega \), \(> \)

Rule of Thumb

- Let \(f(n), g(n) \) be two functions of \(n \)
- Let \(f_1(n) \), be the fastest growing term of \(f(n) \), stripped of its coefficient.
- Let \(g_1(n) \), be the fastest growing term of \(g(n) \), stripped of its coefficient.

Then we can say:

- If \(f_1(n) \leq g_1(n) \) then \(f(n) = O(g(n)) \)
- If \(f_1(n) \geq g_1(n) \) then \(f(n) = \Omega(g(n)) \)
- If \(f_1(n) = g_1(n) \) then \(f(n) = \Theta(g(n)) \)
- If \(f_1(n) < g_1(n) \) then \(f(n) = o(g(n)) \)
- If \(f_1(n) > g_1(n) \) then \(f(n) = \omega(g(n)) \)
More Examples

The following are all true statements:

- $\sum_{i=1}^{n} i^2$ is $O(n^3)$, $\Omega(n^3)$ and $\Theta(n^3)$
- $\log n$ is $o(\sqrt{n})$
- $\log n$ is $o(\log 2 n)$
- $10,000n^2 + 25n$ is $\Theta(n^2)$

Problems

True or False? (Justify your answer)

- $n^3 + 4$ is $\omega(n^2)$
- $n \log n^3$ is $\Theta(n \log n)$
- $\log 3^5 n^2$ is $\Theta(\log n)$
- $10^{-10}n^2 + n$ is $\Theta(n)$
- $n \log n$ is $\Omega(n)$
- $n^3 + 4$ is $o(n^4)$

Formal Defns

- $O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0\}$
- $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0\}$
- $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0\}$

Formal Defns (II)

- $o(g(n)) = \{f(n) : \text{for any positive constant } c > 0 \text{ there exists } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0\}$
- $\omega(g(n)) = \{f(n) : \text{for any positive constant } c > 0 \text{ there exists } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0\}$
Another Example

- Let \(f(n) = 10 \log 2 n + \log n \), \(g(n) = \log^2 n \). Let’s show that \(f(n) = \Theta(g(n)) \).
- We want positive constants \(c_1, c_2 \) and \(n_0 \) such that \(0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \) for all \(n \geq n_0 \)
 \[
 0 \leq c_1 \log^2 n \leq 10 \log^2 n + \log n \leq c_2 \log^2 n
 \]
 Dividing by \(\log^2 n \), we get:
 \[
 0 \leq c_1 \leq 10 + 1/\log n \leq c_2
 \]
- If we choose \(c_1 = 1 \), \(c_2 = 11 \) and \(n_0 = 2 \), then the above inequality will hold for all \(n \geq n_0 \)

In-Class Exercise

Show that for \(f(n) = n + 100 \) and \(g(n) = (1/2)n^2 \), that \(f(n) \neq \Theta(g(n)) \)

- What statement would be true if \(f(n) = \Theta(g(n)) \)?
- Show that this statement can not be true.

Recurrence Relation Review

“\(\text{Oh how should I not lust after eternity and after the nuptial ring of rings, the ring of recurrence} \)” - Friedrich Nietzsche, Thus Spoke Zarathustra

- \(T(n) = 2 \cdot T(n/2) + n \) is an example of a recurrence relation
- A Recurrence Relation is any equation for a function \(T \), where \(T \) appears on both the left and right sides of the equation.
- We always want to “solve” these recurrence relation by getting an equation for \(T \), where \(T \) appears on just the left side of the equation

Recurrence Relations

- Whenever we analyze the run time of a recursive algorithm, we will first get a recurrence relation
- To get the actual run time, we need to solve the recurrence relation
Substitution Method

- One way to solve recurrences is the substitution method aka “guess and check”
- What we do is make a good guess for the solution to $T(n)$, and then try to prove this is the solution by induction

Example

- Let’s guess that the solution to $T(n) = 2 * T(n/2) + n$ is $T(n) = O(n \log n)$
- In other words, $T(n) \leq cn \log n$ for all $n \geq n_0$, for some positive constants c, n_0
- We can prove that $T(n) \leq cn \log n$ is true by plugging back into the recurrence

Proof by Induction

- I.H.: For all $j < n$, $T(j) \leq cj \log j$
- I.S.:

 \[
 T(n) = 2T(n/2) + n \quad (3)
 \leq 2(cn/2 \log(n/2)) + n \quad (4)
 = cn \log(n/2) + n \quad (5)
 = cn(\log n - \log 2) + n \quad (6)
 = cn \log n - cn + n \quad (7)
 \leq cn \log n \quad (8)
 \]

 The second step uses the I.H. and the last step holds for all $n > 0$ if $c \geq 1$

Todo

- Read Syllabus
- Visit the class web page off of www.cs.unm.edu/~saia/
- Sign up for the class mailing list (cs362)
- Read Chapter 3 and 4 in the text