. Today's Outline _____

CS 362, Lecture 16 Minimum Spanning Trees Jared Saia University of New Mexico 1 _ Graph Defns ____ Graph Definition _____ • A graph G' = (V', E') is a subgraph of G = (V, E) if $V' \subseteq V$ • Recall that a graph is a pair of sets (V, E). and $E' \subseteq E$ • We call V the vertices of the graph • If (u, v) is an edge in a graph, then u is a *neighbor* of v• E is a set of vertex pairs which we call the edges of the • For a vertex v, the *degree* of v, deg(v), is equal to the number graph. of neighbors of v• In an *undirected* graph, the edges are unordered pairs of • A *path* is a sequence of edges, where each successive pair of vertices and in a *directed* graph, the edges are ordered pairs. edges shares a vertex and all edges are disjoint • We assume that there is never an edge from a vertex to itself • A graph is *connected* if there is a path from any vertex to (no self-loops) and that there is at most one edge from any any other vertex vertex to any other (no multi-edges) • A disconnected graph consists of several connected compo-• |V| is the number of vertices in the graph and |E| is the *nents* which are maximal connected subgraphs number of edges • Two vertices are in the same component if and only if there is a path between them

Graph Defns _____

Minimum Spanning Tree Problem _____

- A *cycle* is a path that starts and ends at the same vertex and has at least one edge
- A graph is *acyclic* if no subgraph is a cycle. Acyclic graphs are also called *forests*
- A *tree* is a connected acyclic graph. It's also a connected component of a forest.
- A *spanning tree* of a graph *G* is a subgraph that is a tree and also contains every vertex of *G*. A graph can only have a spanning tree if it's connected
- A *spanning forest* of *G* is a collection of spanning trees, one for each connected component of *G*

- Suppose we are given a connected, undirected weighted graph
- That is a graph G = (V, E) together with a function $w: E \rightarrow R$ that assigns a *weight* w(e) to each edge e. (We assume the weights are real numbers)
- Our task is to find the *minimum spanning tree* of G, i.e., the spanning tree T minimizing the function

$$w(T) = \sum_{e \in T} w(e)$$

 $\underbrace{4}_{\text{s}}_{\text{s}} = \underbrace{5}_{\text{s}}_{\text{s}} \\ \text{Example}_{\text{s}} \\ A \text{ weighted graph and its minimum spanning tree} \\ \text{find an edge } (u, v) \text{ that is safe for } A; \\ A = A \text{ union } (u, v); \\ \text{return } A; \\ \end{bmatrix} \\ \text{return } A; \\ \end{bmatrix}$

Safe edges _____

Theorem _

- A cut (S, V S) of a graph G = (V, E) is a partition of V
- An edge (u, v) crosses the cut (S, V-S) if one of its endpoints is in S and the other is in V-S
- A cut *respects* a set of edges A if no edge in A crosses the cut.
- An edge is a *light edge* crossing a cut if its weight is the minimum of any edge crossing the cut

Let G = (V, E) be a connected, undirected graph with a realvalued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G. Let (S, V - S) be any cut of G that respects A and let (u, v) be a light edge crossing (S, V - S). Then edge (u, v) is safe for A

8

Corollary _____

Let G = (V, E) be a connected, undirected graph with a realvalued weight function w defined on E. Let A be a subset of E that is included in some minimum spanning tree for G, and let $C = (V_c, E_c)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge connecting C to some other component in G_A , then (u, v) is safe for A

Proof: The cut $(V_C, V - V_C)$ respects A, and (u, v) is a light edge for this cut. Therefore (u, v) is safe for A.

— Two MST algorithms ——

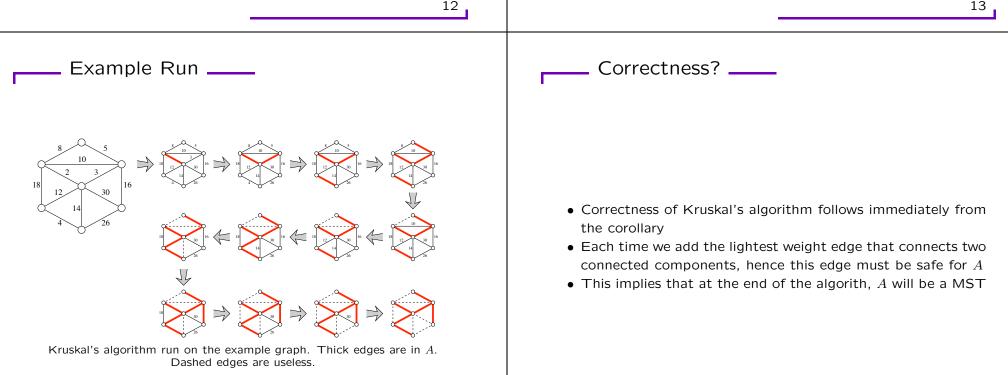
- There are two major MST algorithms, Kruskal's and Prim's
- In Kruskal's algorithm, the set A is a forest. The safe edge added to A is always a least-weighted edge in the graph that connects two distinct components
- In Prim's algorithm, the set A forms a single tree. The safe edge added to A is always a least-weighted edge connecting the tree to a vertex not in the tree

Kruskal's Algorithm _____

Kruskal's Algorithm _____

- Q: In Kruskal's algorithm, how do we determine whether or not an edge connects two distinct connected components?
- A: We need some way to keep track of the sets of vertices that are in each connected components and a way to take the union of these sets when adding a new edge to A merges two connected components
- What we need is the data structure for maintaining disjoint sets (aka Union-Find) that we discussed last week

```
MST-Kruskal(G,w){
  for (each vertex v in V)
    Make-Set(v);
  sort the edges of E into nondecreasing order by weight;
  for (each edge (u,v) in E taken in nondecreasing order){
    if(Find-Set(u)!=Find-Set(v)){
        A = A union (u,v);
        Set-Union(u,v);
    }
    }
    return A;
}
```



Runtime? Runtime? • Time to sort the edges is $O(|E| \log |E|)$ • Total amount of time for the |V| Make-Sets and up to |E|Set-Unions is $O((|V| + |E|) \log^* |V|)$ • The runtime fo the Kruskal's alg. will depend on the imple-• Since G is connected, |E| > |V|-1 and so $O((|V|+|E|) \log^* |V|) =$ mentation of the disjoint-set data structure. We'll assume $O(|E|\log^*|V|) = O(|E|\log|E|)$ the implementation with union-by-rank and path-compression • Total amount of additional work done in the for loop is just which we showed has amortized cost of $\log^* n$ O(E)• Thus total runtime of the algorithm is $O(|E| \log |E|)$ • Since $|E| \le |V|^2$, we can rewrite this as $O(|E| \log |V|)$ 16 17 Example Run _____ Prim's Algorithm • In Prim's algorithm, the set A maintained by the algorithm forms a single tree. • The tree starts from an arbitrary root vertex and grows until it spans all the vertices in V• At each step, a light edge is added to the tree A which connects A to an isolated vertex of $G_A = (V, A)$ Prim's algorithm run on the example graph, starting with the • By our Corollary, this rule adds only safe edges to A, so when bottom vertex. the algorithm terminates, it will return a MST At each stage, thick edges are in A, an arrow points along A's safe edge, and dashed edges are useless.

An Implementation

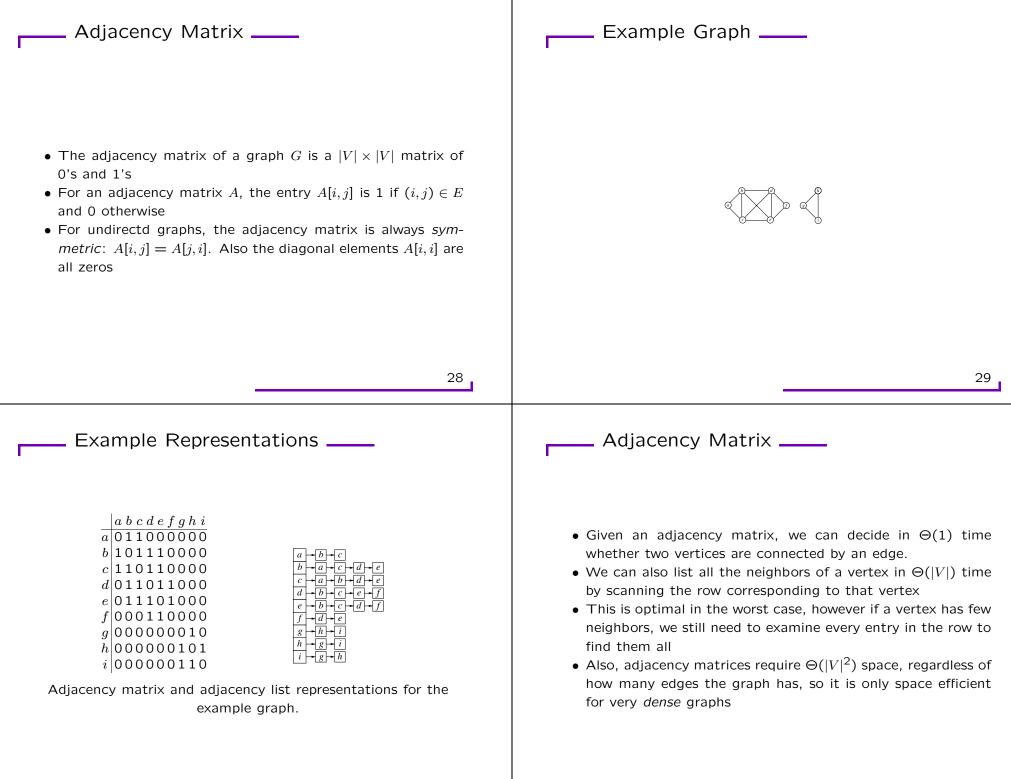
_ Prim's Algorithm _____

- To implement Prim's algorithm, we keep all edges adjacent to A in a heap
- When we pull the minimum-weight edge off the heap, we first check to see if both its endpoints are in A
- If not, we add the edge to A and then add the neighboring edges to the heap
- If we implement Prim's algorithm this way, its running time is $O(|E| \log |E|) = O(|E| \log |V|)$
- However, we can do better

- We can speed things up by noticing that the algorithm visits each vertex only once
- Rather than keeping the edges in the heap, we will keep a heap of vertices, where the key of each vertex v is the weight of the minimum-weight edge between v and A (or infinity if there is no such edge)
- Each time we add a new edge to *A*, we may need to decrease the key of some neighboring vertices

```
20
                                                                                                                                  21
     Prim's _____
                                                                             Prim-Init _____
                                                                        Prim-Init(V,E,s){
                                                                          for each vertex v in V - \{s\}
                                                                            if ((v,s) is in E){
We will break up the algorithm into two parts, Prim-Init and
                                                                              edge(v) = (v,s);
Prim-Loop
                                                                              key(v) = w((v,s));
                                                                            }else{
Prim(V,E,s){
                                                                              edge(v) = NULL;
 Prim-Init(V,E,s);
                                                                              key(v) = infinity;
 Prim-Loop(V,E,s);
                                                                            }
}
                                                                          }
                                                                          Heap-Insert(v);
                                                                         3
```

Prim-Loop	Runtime?
<pre>Prim-Loop(V,E,s){ A = {}; for (i = 1 to V - 1){ v = Heap-ExtractMin(); add edge(v) to A; for (each edge (u,v) in E){ if (u is not in A AND key(u) > w(u,v)){ edge(u) = (u,v); Heap-DecreaseKey(u,w(u,v)); } } } return A; }</pre>	 The runtime of Prim's is dominated by the cost of the heap operations Insert, ExtractMin and DecreaseKey Insert and ExtractMin are each called O(V) times DecreaseKey is called O(E) times, at most twice for each edge If we use a <i>Fibonacci Heap</i>, the amortized costs of Insert and DecreaseKey is O(1) and the amortized cost of ExtractMin is O(log V) Thus the overall run time of Prim's is O(E + V log V) This is faster than Kruskal's unless E = O(V)
24	25
Note	Graph Representation
 This analysis assumes that it is fast to find all the edges that are incident to a given vertex We have not yet discussed how we can do this This brings us to a discussion of how to represent a graph in a computer 	There are two common data structures used to explicity repre- sent graphs • Adjacency Matrices • Adjacency Lists



Adjacency Lists _____

Adjacency Lists _____

- For *sparse* graphs graphs with relatively few edges we're better off with adjacency lists
- An adjacency list is an array of linked lists, one list per vertex
- Each linked list stores the neighbors of the corresponding vertex

- The total space required for an adjacency list is O(|V| + |E|)
- Listing all the neighbors of a node v takes O(1 + deg(v)) time
- We can determine if (u, v) is an edge in O(1 + deg(u)) time by scanning the neighbor list of u
- Note that we can speed things up by storing the neighbors of a node not in lists but rather in hash tables
- Then we can determine if an edge is in the graph in expected O(1) time and still list all the neighbors of a node v in O(1 + deg(v)) time