

| Facts about exponents                                                                                                                                               | Facts about logs                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Recall that:<br>• $(x^y)^z = x^{yz}$<br>• $x^yx^z = x^{y+z}$<br>From these, we can derive some facts about logs                                                     | To prove both equations, raise both sides to the power of 2, and<br>use facts about exponents<br>• Fact 1: $log(xy) = log x + log y$<br>• Fact 2: $log a^c = c log a$<br>Memorize these two facts                             |
| 8                                                                                                                                                                   | 9                                                                                                                                                                                                                             |
| Incredibly useful fact about logs                                                                                                                                   | Log facts to memorize                                                                                                                                                                                                         |
| • Fact 3: $\log_c a = \log a / \log c$<br>To prove this, consider the equation $a = c^{\log_c a}$ , take $\log_2$ of both sides, and use Fact 2. Memorize this fact | • Fact 1: $\log(xy) = \log x + \log y$<br>• Fact 2: $\log a^c = c \log a$<br>• Fact 3: $\log_c a = \log a / \log c$<br>These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them) |
| 10                                                                                                                                                                  | 11                                                                                                                                                                                                                            |

Logs and O notation \_\_\_\_\_ Take Away \_\_\_\_\_ • All log functions of form  $k_1 \log_{k_2} k_3 * n^{k_4}$  for constants  $k_1$ ,  $k_2$ , • Note that  $\log_8 n = \log n / \log 8$ . • Note that  $\log_{600} n^{200} = 200 * \log n / \log 600$ .  $k_3$  and  $k_4$  are  $O(\log n)$ • Note that  $\log_{100000} 30 * n^2 = 2 * \log n / \log 100000 + \log 30 / \log 100000$ • For this reason, we don't really "care" about the base of the • Thus,  $\log_8 n$ ,  $\log_{600} n^{600}$ , and  $\log_{100000} 30*n^2$  are all  $O(\log n)$ log function when we do asymptotic notation • In general, for any constants  $k_1$  and  $k_2$ ,  $\log_{k_1} n^{k_2} = k_2 \log n / \log k_1$ , • Thus, binary search, ternary search and k-ary search all take which is just  $O(\log n)$  $O(\log n)$  time 12 13 Important Note \_\_\_\_\_ In-Class Exercise Simplify and give O notation for the following functions. In the •  $\log^2 n = (\log n)^2$ big-O notation, write all logs base 2: •  $\log^2 n$  is  $O(\log^2 n)$ , not  $O(\log n)$ • This is true since  $\log^2 n$  grows asymptotically faster than •  $\log 10n^2$  $\log n$ •  $\log^2 n^4$ • All log functions of form  $k_1 \log_{k_3}^{k_2} k_4 * n^{k_5}$  for constants  $k_1$ ,  $k_2$ , • 2<sup>log<sub>4</sub> n</sup>  $k_{3}, k_{4}$  and  $k_{5}$  are  $O(\log^{k_2} n)$ •  $\log \log \sqrt{n}$ 

Recurrences and Inequalities \_\_\_\_\_

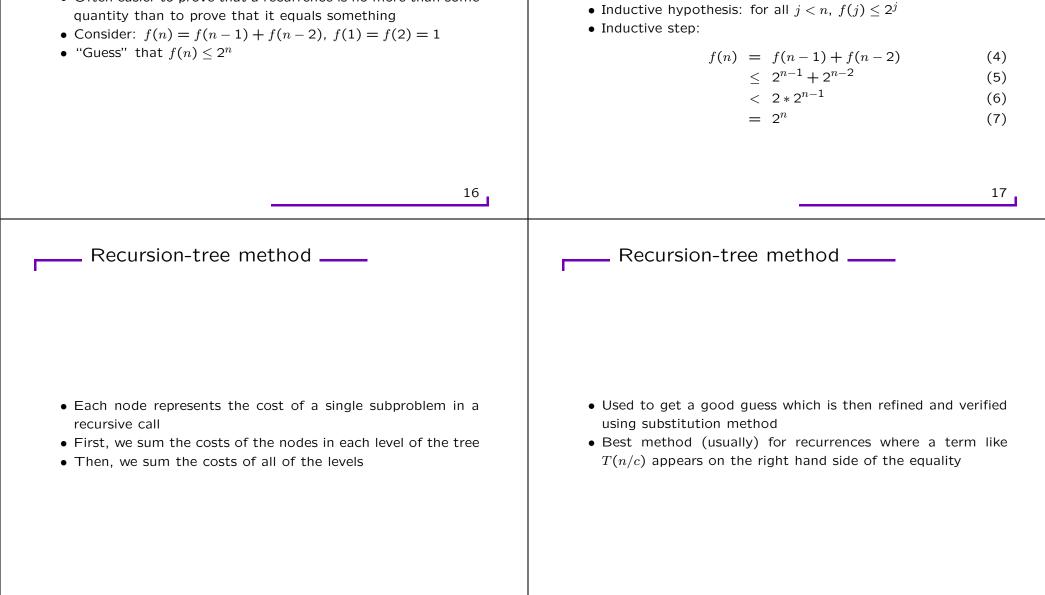
• Often easier to prove that a recurrence is no more than some

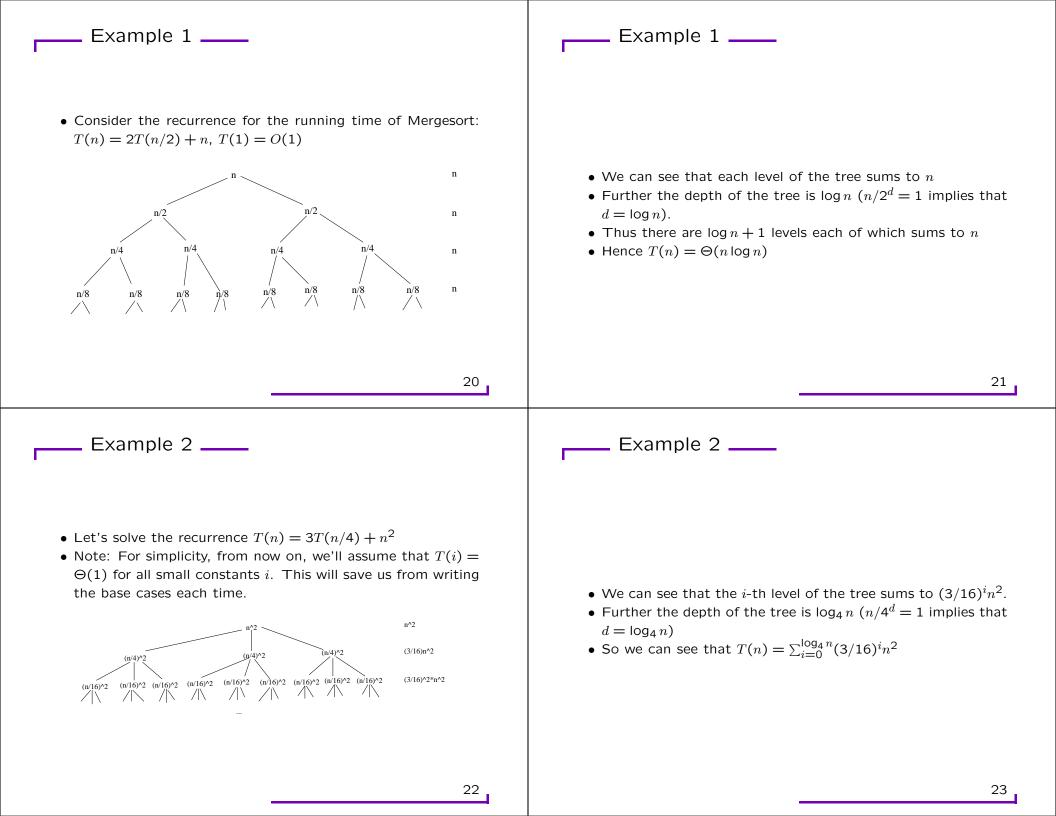
\_ Inequalities (II) \_\_\_\_\_

• Base case:  $f(1) = 1 < 2^1$ ,  $f(2) = 1 < 2^2$ 

 $f(1) = f(2) = 1, f(n) < 2^n$ 

Goal: Prove by induction that for f(n) = f(n-1) + f(n-2),





Solution \_\_\_\_\_

## Master Theorem \_\_\_\_\_

 $T(n) = \sum_{i=0}^{\log_4 n} (3/16)^i n^2 \tag{8}$ 

< 
$$n^2 \sum_{i=0}^{\infty} (3/16)^i$$
 (9)

$$= \frac{1}{1 - (3/16)} n^2 \tag{10}$$

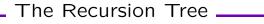
$$= O(n^2) \tag{11}$$

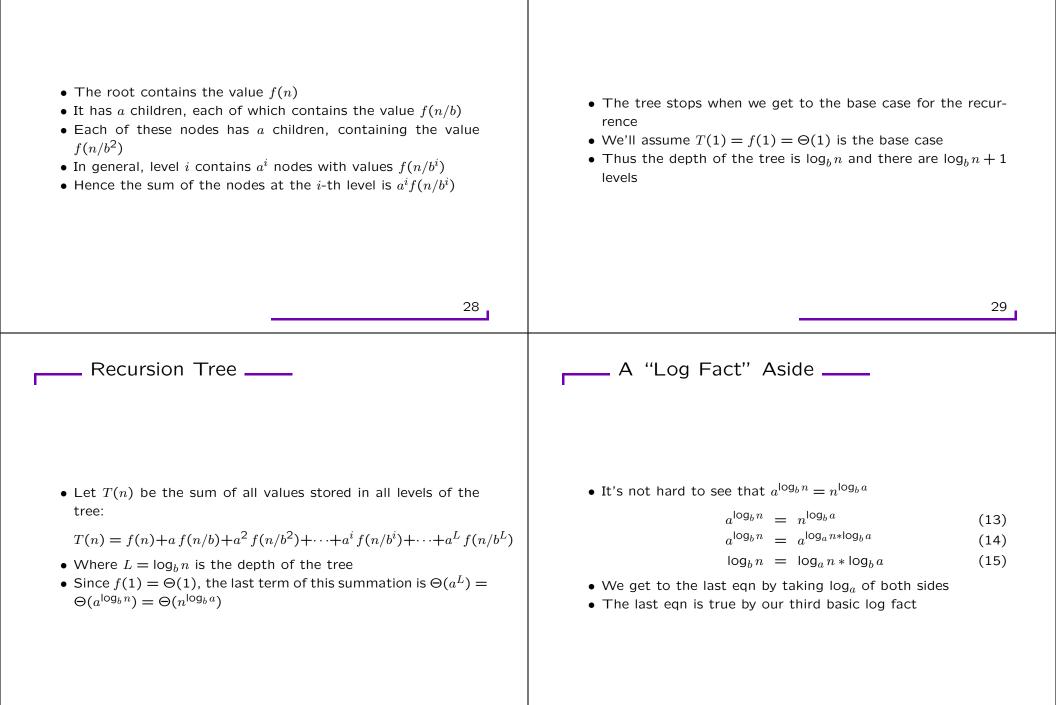
• Divide and conquer algorithms often give us running-time recurrences of the form

$$T(n) = a T(n/b) + f(n)$$
(12)

- Where a and b are constants and f(n) is some other function.
- The so-called "Master Method" gives us a general method for solving such recurrences when f(n) is a simple polynomial.

\_ Details \_\_\_\_





## Master Theorem \_\_\_\_\_

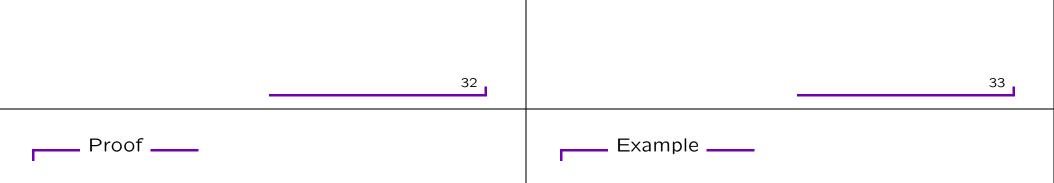
## Master Method \_\_\_\_\_

• We can now state the Master Theorem

- We will state it in a way slightly different from the book
- Note: The Master Method is just a "short cut" for the recursion tree method. It is less powerful than recursion trees.

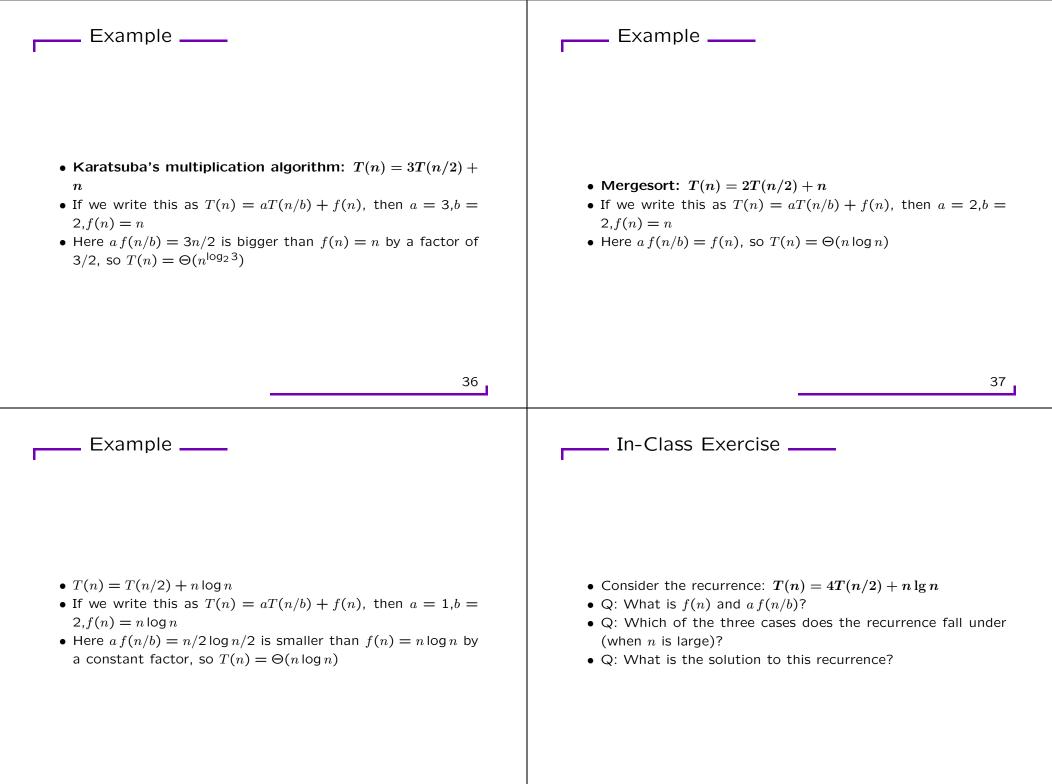
The recurrence T(n) = aT(n/b) + f(n) can be solved as follows:

- If  $a f(n/b) \le K f(n)$  for some constant K < 1, then  $T(n) = \Theta(f(n))$ .
- If  $a f(n/b) \ge K f(n)$  for some constant K > 1, then  $T(n) = \Theta(n^{\log_b a})$ .
- If a f(n/b) = f(n), then  $T(n) = \Theta(f(n) \log_b n)$ .



- If f(n) is a constant factor larger than a f(n/b), then the sum is a descending geometric series. The sum of any geometric series is a constant times its largest term. In this case, the largest term is the first term f(n).
- If f(n) is a constant factor smaller than a f(n/b), then the sum is an ascending geometric series. The sum of any geometric series is a constant times its largest term. In this case, this is the last term, which by our earlier argument is  $\Theta(n^{\log_b a})$ .
- Finally, if a f(n/b) = f(n), then each of the L + 1 terms in the summation is equal to f(n).

- T(n) = T(3n/4) + n
- If we write this as T(n) = aT(n/b) + f(n), then a = 1, b = 4/3, f(n) = n
- Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of 4/3, so  $T(n) = \Theta(n)$



\_ Take Away \_\_\_\_\_

In-Class Exercise

- ullet Consider the recurrence:  $T(n)=2T(n/4)+n\lg n$
- Q: What is f(n) and a f(n/b)?
- Q: Which of the three cases does the recurrence fall under (when *n* is large)?
- Q: What is the solution to this recurrence?

- Recursion tree and Master method are good tools for solving many recurrences
- However these methods are limited (they can't help us get guesses for recurrences like f(n) = f(n-1) + f(n-2))
- For info on how to solve these other more difficult recurrences, review the notes on annihilators on the class web page.

41

40