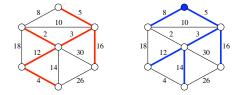
Today's Outline _____ "The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and CS 362, Lecture 20 unchanging Name." - Tao Te Ching Jared Saia • Single Source Shortest Paths University of New Mexico • Dijkstra's Algorithm Bellman-Ford Algorithm 1 Shortest Paths Problem _____ Negative Weights _____ • We'll actually allow negative weights on edges • The presence of a negative cycle might mean that there is • Another interesting problem for graphs is that of finding no shortest path shortest paths • A shortest path from s to t exists if and only if there is at • Assume we are given a weighted *directed* graph G = (V, E)*least one* path from s to t but no path from s to t that with two special vertices, a source s and a target ttouches a negative cycle • We want to find the shortest directed path from s to t • In the following example, there is no shortest path from s to t• In other words, we want to find the path p starting at s and ending at t minimizing the function $w(p) = \sum_{e \in p} w(e)$

2

Single Source Shortest Paths _____

- Singles Source Shortest Paths (SSSP) is a more general problem
- SSSP is the following problem: find the shortest path from the source vertex *s* to every other vertex in the graph
- The problem is solved by finding a shortest path tree rooted at the vertex *s* that contains all the desired shortest paths
- A shortest path tree is *not* a MST



• We'll now go over some algorithms for SSSP on directed graphs.

SSSP Algorithms _____

- These algorithms will work for undirected graphs with slight modification
- In particular, we must specifically prohibit alternating back and forth across the same undirected negative-weight edge
- Like for graph traversal, all the SSSP algorithms will be special cases of a single generic algorithm

4

____ SSSP Algorithms _____

Each vertex v in the graph will store two values which describe a tentative shortest path from s to v

- dist(v) is the length of the tentative shortest path between s and v
- pred(v) is the predecessor of v in this tentative shortest path
- The predecessor pointers automatically define a tentative shortest path tree

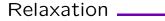
Defns _____

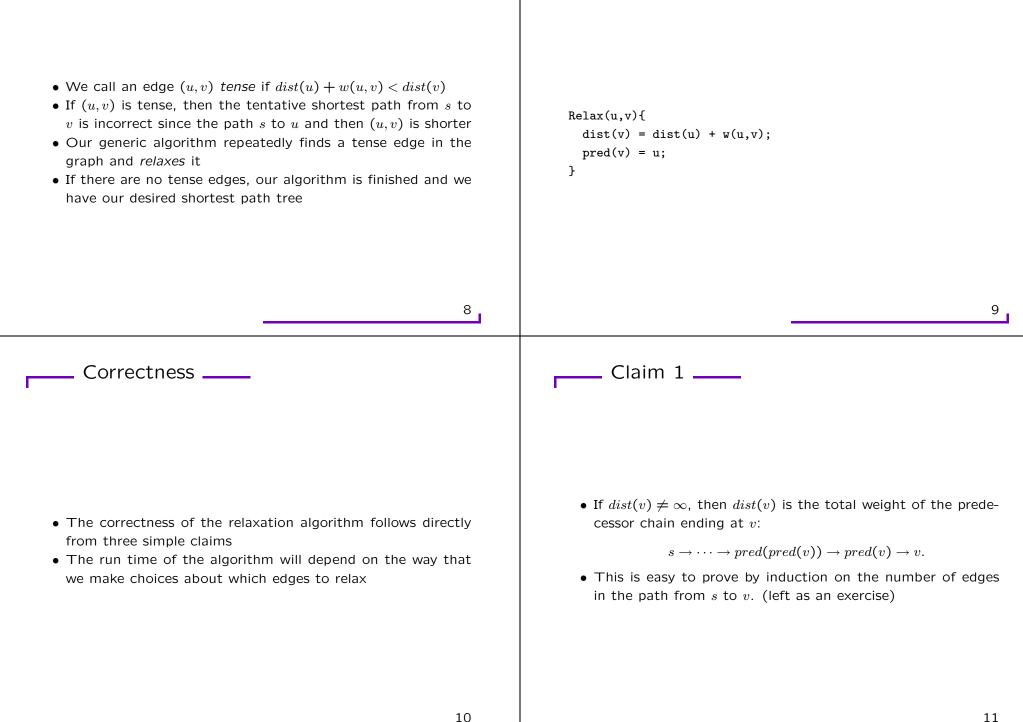
Initially we set:

- dist(s) = 0, pred(s) = NULL
- For every vertex $v \neq s$, $dist(v) = \infty$ and pred(v) = NULL

6

Relax _____





Claim 2

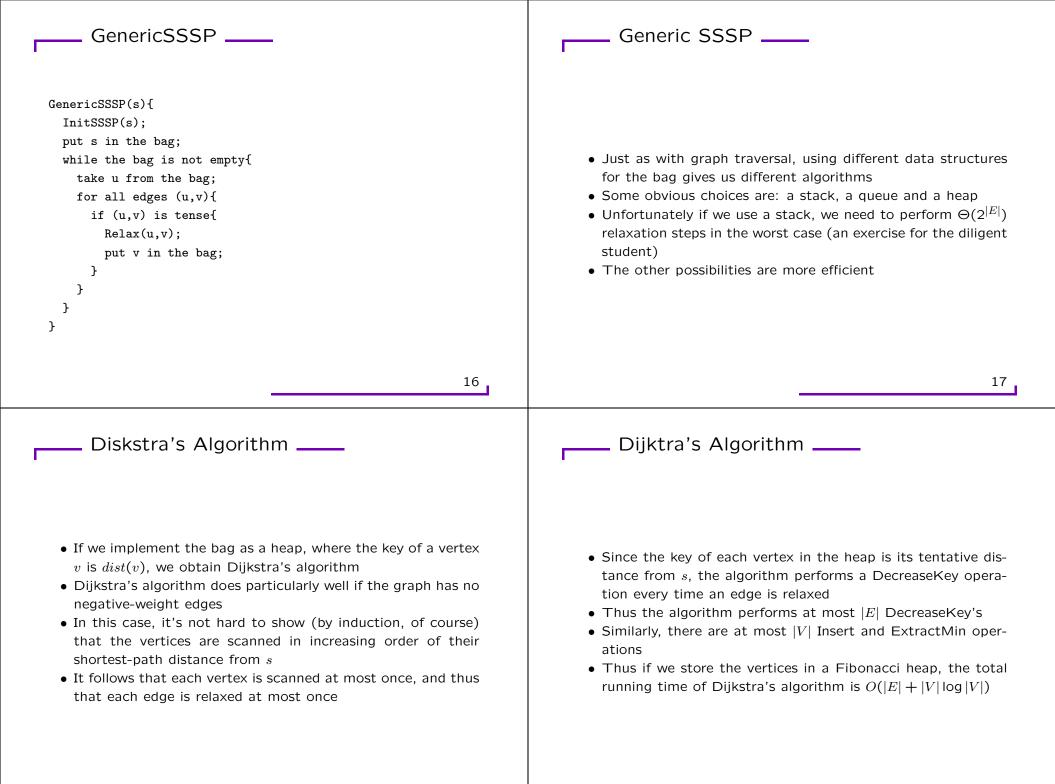
- If the algorithm halts, then $dist(v) \le w(s \rightsquigarrow v)$ for any path $s \rightsquigarrow v$.
- This is easy to prove by induction on the number of edges in the path $s \rightsquigarrow v$. (which you will do in the hw)

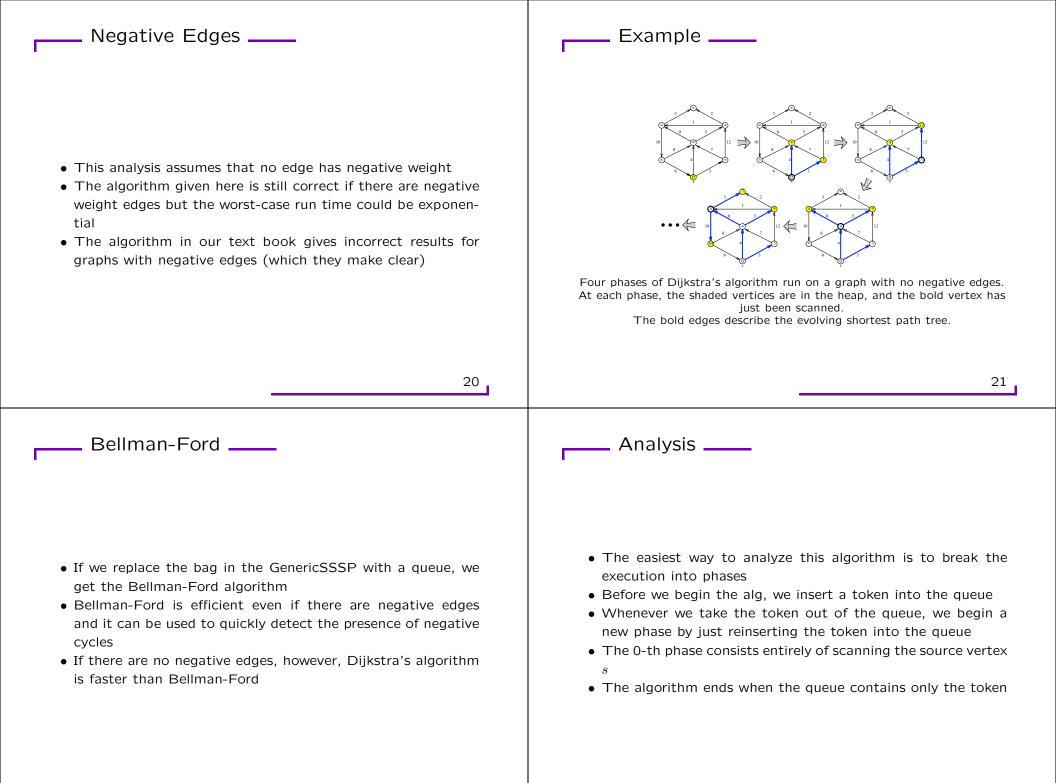
• The algorithm halts if and only if there is no negative cycle reachable from *s*.

Claim 3

- The 'only if' direction is easy—if there is a reachable negative cycle, then after the first edge in the cycle is relaxed, the cycle *always* has at least one tense edge.
- The 'if' direction follows from the fact that every relaxation step reduces either the number of vertices with $dist(v) = \infty$ by 1 or reduces the sum of the finite shortest path lengths by some positive amount.

12 13 Generic SSSP InitSSSP _____ • We haven't yet said how to detect which edges can be relaxed or what order to relax them in InitSSSP(s){ • The following Generic SSSP algorithm answers these quesdist(s) = 0;tions pred(s) = NULL; • We will maintain a "bag" of vertices initially containing just for all vertices v != s{ the source vertex *s* dist(v) = infinity; • Whenever we take a vertex u out of the bag, we scan all of pred(v) = NULL; its outgoing edges, looking for something to relax } • Whenever we successfully relax an edge (u, v), we put v in } the bag





Invariant

- A simple inductive argument (left as an exercise) shows the following invariant:
- At the end of the *i*-th phase, for each vertex v, dist(v) is less than or equal to the length of the shortest path $s \rightarrow v$ consisting of *i* or fewer edges

Analysis _____

- Since a shortest path can only pass through each vertex once, either the algorithm halts before the |V|-th phase or the graph contains a negative cycle
- In each phase, we scan each vertex at most once and so we relax each edge at most once
- Hence the run time of a single phase is O(|E|)
- Thus, the overall run time of Bellman-Ford is O(|V||E|)

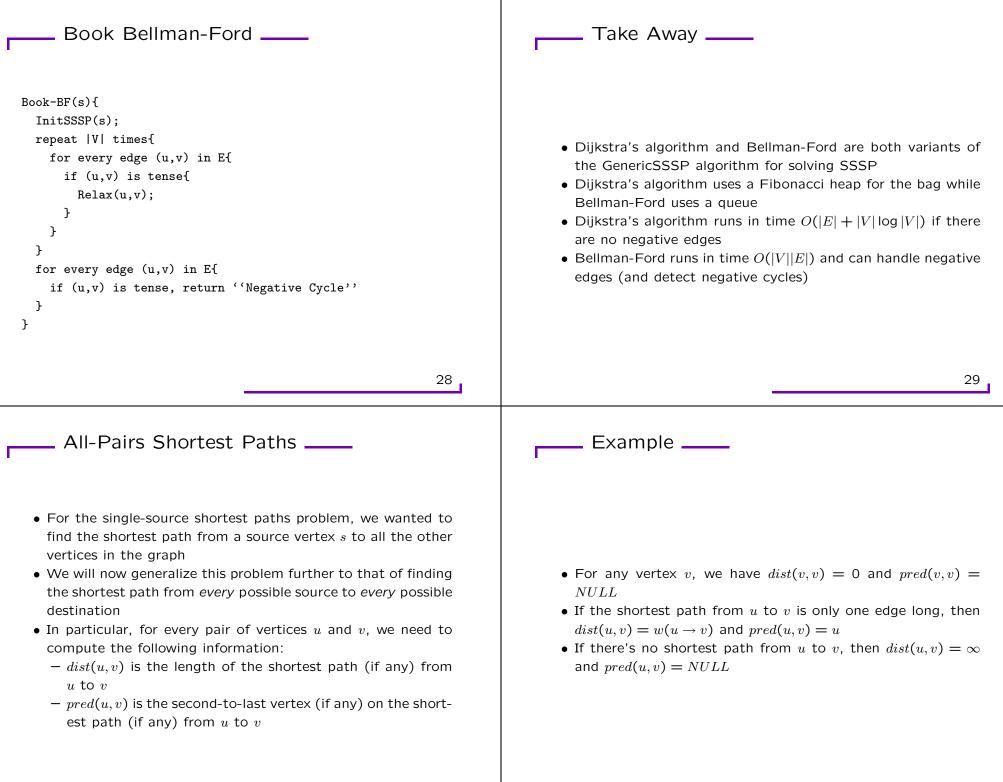
Four phases of Bellman-Ford's algorithm run on a directed graph with negative edges. Nodes are taken from the queue in the order $s \diamond a \ b \ c \diamond d \ f \ b \diamond a \ e \ d \diamond d \ a \diamond \diamond$, where \diamond is the token. Shaded vertices are in the queue at the end of each phase. The bold edges describe the evolving shortest path tree.

24

Book Bellman-Ford _____

Example

- Now that we understand how the phases of Bellman-Ford work, we can simplify the algorithm
- Instead of using a queue to perform a partial BFS in each phase, we will just scan through the adjacency list directly and try to relax every edge in the graph
- This will be much closer to how the textbook presents Bellman-Ford
- The run time will still be O(|V||E|)
- To show correctness, we'll have to show that are earlier invariant holds which can be proved by induction on \boldsymbol{i}



APSP ____ Lots of Single Sources _____ • The output of our shortest path algorithm will be a pair of $|V| \times |V|$ arrays encoding all $|V|^2$ distances and predecessors. • Many maps contain such a distance matric - to find the Most obvious solution to APSP is to just run SSSP algorithm distance from (say) Albuquerque to (say) Ruidoso, you look |V| timnes, once for every possible source vertex in the row labeled "Albuquerque" and the column labeled • Specifically, to fill in the subarray dist(s, *), we invoke either "Ruidoso" Dijkstra's or Bellman-Ford starting at the source vertex s• We'll focus only on computing the distance array • We'll call this algorithm ObviousAPSP • The predecessor array, from which you would compute the actual shortest paths, can be computed with only minor additions to the algorithms presented here 33 32 ObviousAPSP _____ _ Analysis _____ • The running time of this algorithm depends on which SSSP algorithm we use ObviousAPSP(V,E,w){ • If we use Bellman-Ford, the overall running time is $O(|V|^2|E|) =$ for every vertex s{ $O(|V|^4)$ dist(s,*) = SSSP(V,E,w,s); } • If all the edge weights are positive, we can use Dijkstra's instead, which decreases the run time to $\Theta(|V||E|+|V|^2 \log |V|) =$ } $O(|V|^3)$

- We'd like to have an algorithm which takes $O(|V|^3)$ but which can also handle negative edge weights
- We'll see that a dynamic programming algorithm, the Floyd Warshall algorithm, will achieve this
- Note: the book discusses another algorithm, Johnson's algorithm, which is asymptotically better than Floyd Warshall on sparse graphs. However we will not be discussing this algorithm in class.