
CS 362, Lecture 20

Jared Saia

University of New Mexico

Today’s Outline

“The path that can be trodden is not the enduring and unchang-

ing Path. The name that can be named is not the enduring and

unchanging Name.” - Tao Te Ching

• Single Source Shortest Paths

• Dijkstra’s Algorithm

• Bellman-Ford Algorithm

1

Shortest Paths Problem

• Another interesting problem for graphs is that of finding

shortest paths

• Assume we are given a weighted directed graph G = (V, E)

with two special vertices, a source s and a target t

• We want to find the shortest directed path from s to t

• In other words, we want to find the path p starting at s and

ending at t minimizing the function

w(p) =
∑
e∈p

w(e)

2

Negative Weights

• We’ll actually allow negative weights on edges

• The presence of a negative cycle might mean that there is

no shortest path

• A shortest path from s to t exists if and only if there is at

least one path from s to t but no path from s to t that

touches a negative cycle

• In the following example, there is no shortest path from s to t

Negative Weights

• We’ll actually allow negative weights on edges
• The presence of a negative cycle might mean that there is

no shortest path
• A shortest path from s to t exists if and only if there is at

least one path from s to t but no path from s to t that
touches a negative cycle

• In the following example, there is no shortest path from s to t

s t5

2 !8

4 1

3

20

SSSP Algorithms

• We’ll now go over some algorithms for SSSP on directed
graphs.

• These algorithms will work for undirected graphs with slight
modification

• In particular, we must specifically prohibit alternating back
and forth across the same undirected negative-weight edge

• Like for graph traversal, all the SSSP algorithms will be spe-
cial cases of a single generic algorithm

21

SSSP Algorithms

Each vertex v in the graph will store two values which describe
a tentative shortest path from s to v

• dist(v) is the length of the tentative shortest path between
s and v

• pred(v) is the predecessor of v in this tentative shortest path
• The predecessor pointers automatically define a tentative

shortest path tree

22

Defns

Initially we set:

• dist(s) = 0, pred(s) = NULL

• For every vertex v != s, dist(v) = ∞ and pred(v) = NULL

23

3

Single Source Shortest Paths

• Singles Source Shortest Paths (SSSP) is a more general prob-

lem

• SSSP is the following problem: find the shortest path from

the source vertex s to every other vertex in the graph

• The problem is solved by finding a shortest path tree rooted

at the vertex s that contains all the desired shortest paths

• A shortest path tree is not a MST

Shortest Path Tree

• It’s not hard to see that if the shortest paths are unique,
then they form a tree

• To prove this, we need only observe that the sub-paths of
shortest paths are themselves shortest paths

• If there are multiple shotest paths to the same vertex, we
can always choose just one of them, so that the union of the
paths is a tree

• If there are shortest paths to two vertices u and v which
diverge, then meet, then diverge again, we can modify one
of the paths so that the two paths diverge once only.

16

Example

s

u

v

a

b c

d

x y

If s → a → b → c → d → v and s → a → x → y → d → u are both
shortest paths,

then s → a → b → c → d → u is also a shortest path.

17

MST vs SPT

• Note that the minimum spanning tree and shortest path tree
can be different

• For one thing there may be only one MST but there can be
multiple shortest path trees (one for every source vertex)

18

Example

8 5

10

2 3

18 16

12

14

30

4 26

8 5

10

2 3

18 16

12

14

30

4 26

A minimum spanning tree (left) and a shortest path tree rooted at the
topmost vertex (right).

19

4

SSSP Algorithms

• We’ll now go over some algorithms for SSSP on directed

graphs.

• These algorithms will work for undirected graphs with slight

modification

• In particular, we must specifically prohibit alternating back

and forth across the same undirected negative-weight edge

• Like for graph traversal, all the SSSP algorithms will be spe-

cial cases of a single generic algorithm

5

SSSP Algorithms

Each vertex v in the graph will store two values which describe

a tentative shortest path from s to v

• dist(v) is the length of the tentative shortest path between

s and v

• pred(v) is the predecessor of v in this tentative shortest path

• The predecessor pointers automatically define a tentative

shortest path tree

6

Defns

Initially we set:

• dist(s) = 0, pred(s) = NULL

• For every vertex v 6= s, dist(v) = ∞ and pred(v) = NULL

7

Relaxation

• We call an edge (u, v) tense if dist(u) + w(u, v) < dist(v)

• If (u, v) is tense, then the tentative shortest path from s to

v is incorrect since the path s to u and then (u, v) is shorter

• Our generic algorithm repeatedly finds a tense edge in the

graph and relaxes it

• If there are no tense edges, our algorithm is finished and we

have our desired shortest path tree

8

Relax

Relax(u,v){

dist(v) = dist(u) + w(u,v);

pred(v) = u;

}

9

Correctness

• The correctness of the relaxation algorithm follows directly

from three simple claims

• The run time of the algorithm will depend on the way that

we make choices about which edges to relax

10

Claim 1

• If dist(v) 6= ∞, then dist(v) is the total weight of the prede-

cessor chain ending at v:

s → · · · → pred(pred(v)) → pred(v) → v.

• This is easy to prove by induction on the number of edges

in the path from s to v. (left as an exercise)

11

Claim 2

• If the algorithm halts, then dist(v) ≤ w(s ; v) for any path

s ; v.

• This is easy to prove by induction on the number of edges

in the path s ; v. (which you will do in the hw)

12

Claim 3

• The algorithm halts if and only if there is no negative cycle

reachable from s.

• The ‘only if’ direction is easy—if there is a reachable negative

cycle, then after the first edge in the cycle is relaxed, the

cycle always has at least one tense edge.

• The ‘if’ direction follows from the fact that every relaxation

step reduces either the number of vertices with dist(v) = ∞
by 1 or reduces the sum of the finite shortest path lengths

by some positive amount.

13

Generic SSSP

• We haven’t yet said how to detect which edges can be relaxed

or what order to relax them in

• The following Generic SSSP algorithm answers these ques-

tions

• We will maintain a “bag” of vertices initially containing just

the source vertex s

• Whenever we take a vertex u out of the bag, we scan all of

its outgoing edges, looking for something to relax

• Whenever we successfully relax an edge (u, v), we put v in

the bag

14

InitSSSP

InitSSSP(s){

dist(s) = 0;

pred(s) = NULL;

for all vertices v != s{

dist(v) = infinity;

pred(v) = NULL;

}

}

15

GenericSSSP

GenericSSSP(s){

InitSSSP(s);

put s in the bag;

while the bag is not empty{

take u from the bag;

for all edges (u,v){

if (u,v) is tense{

Relax(u,v);

put v in the bag;

}

}

}

}

16

Generic SSSP

• Just as with graph traversal, using different data structures

for the bag gives us different algorithms

• Some obvious choices are: a stack, a queue and a heap

• Unfortunately if we use a stack, we need to perform Θ(2|E|)
relaxation steps in the worst case (an exercise for the diligent

student)

• The other possibilities are more efficient

17

Diskstra’s Algorithm

• If we implement the bag as a heap, where the key of a vertex

v is dist(v), we obtain Dijkstra’s algorithm

• Dijkstra’s algorithm does particularly well if the graph has no

negative-weight edges

• In this case, it’s not hard to show (by induction, of course)

that the vertices are scanned in increasing order of their

shortest-path distance from s

• It follows that each vertex is scanned at most once, and thus

that each edge is relaxed at most once

18

Dijktra’s Algorithm

• Since the key of each vertex in the heap is its tentative dis-

tance from s, the algorithm performs a DecreaseKey opera-

tion every time an edge is relaxed

• Thus the algorithm performs at most |E| DecreaseKey’s

• Similarly, there are at most |V | Insert and ExtractMin oper-

ations

• Thus if we store the vertices in a Fibonacci heap, the total

running time of Dijkstra’s algorithm is O(|E|+ |V | log |V |)

19

Negative Edges

• This analysis assumes that no edge has negative weight

• The algorithm given here is still correct if there are negative

weight edges but the worst-case run time could be exponen-

tial

• The algorithm in our text book gives incorrect results for

graphs with negative edges (which they make clear)

20

Example

Negative Edges

• This analysis assumes that no edge has negative weight
• The algorithm given here is still correct if there are negative

weight edges but the worst-case run time could be exponen-
tial

• The algorithm in our text book gives incorrect results for
graphs with negative edges (which they make clear)

36

Example

1

3 2

0 5

10 12

8

4

6 3

7

s

!

!

!

!

4

3

1

3 2

0 5

10 12

8

4

6 3

7

s

0

!

!

!

!

!

!

1

3 2

0 5

10 12

8

4

6 3

7

s

!

!

!

4

3

12

1

3 2

0 5

10 12

8

4

6 3

7

s

!

!

4

3

94
1

3 2

0 5

10 12

8

4

6 3

7

s

4

3

94

7

14

0 0

0 0

Four phases of Dijkstra’s algorithm run on a graph with no negative edges.
At each phase, the shaded vertices are in the heap, and the bold vertex has

just been scanned.
The bold edges describe the evolving shortest path tree.

37

Four phases of Dijkstra’s algorithm run on a graph with no negative edges.
At each phase, the shaded vertices are in the heap, and the bold vertex has

just been scanned.
The bold edges describe the evolving shortest path tree.

21

Bellman-Ford

• If we replace the bag in the GenericSSSP with a queue, we

get the Bellman-Ford algorithm

• Bellman-Ford is efficient even if there are negative edges

and it can be used to quickly detect the presence of negative

cycles

• If there are no negative edges, however, Dijkstra’s algorithm

is faster than Bellman-Ford

22

Analysis

• The easiest way to analyze this algorithm is to break the

execution into phases

• Before we begin the alg, we insert a token into the queue

• Whenever we take the token out of the queue, we begin a

new phase by just reinserting the token into the queue

• The 0-th phase consists entirely of scanning the source vertex

s

• The algorithm ends when the queue contains only the token

23

Invariant

• A simple inductive argument (left as an exercise) shows the

following invariant:

• At the end of the i-th phase, for each vertex v, dist(v) is

less than or equal to the length of the shortest path s ; v

consisting of i or fewer edges

24

Example

Invariant

• A simple inductive argument (left as an exercise) shows the
following invariant:

• At the end of the i-th phase, for each vertex v, dist(v) is
less than or equal to the length of the shortest path s ! v

consisting of i or fewer edges

24

Example

!2

1

2

0 5

4

6 3

s

0

!3

!18

a

b

c

d

e

f
1

2

0 5

4

6 3

s

0

!3

!18

a

b

c

d

e

f

1

2

0 5

4

6 3

s

0

!

!3

!18

a

b

c

d

e

f
1

2

0 5

4

6 3

s

0

!

!

!

!

!

! !3

!18

a

b

c

d

e

f
1

2

0 5

4

6 3

s

0

!

!

!

!3

!18

a

b

c

d

e

f

6

4

3 6

2

3

74

3

2

2 7

9

!8!8

!8!8!8

!3 !3

!3 !3

!3

1

9

7

2

3

1

Four phases of Bellman-Ford’s algorithm run on a directed
graph with negative edges.

Nodes are taken from the queue in the order
s ! a b c ! d f b ! a e d ! d a ! !, where ! is the token.

Shaded vertices are in the queue at the end of each phase.
The bold edges describe the evolving shortest path tree.

25

Analysis

• Since a shortest path can only pass through each vertex once,
either the algorithm halts before the |V |-th phase or the graph
contains a negative cycle

• In each phase, we scan each vertex at most once and so we
relax each edge at most once

• Hence the run time of a single phase is O(|E|)
• Thus, the overall run time of Bellman-Ford is O(|V ||E|)

26

Book Bellman-Ford

• Now that we understand how the phases of Bellman-Ford
work, we can simplify the algorithm

• Instead of using a queue to perform a partial BFS in each
phase, we will just scan through the adjacency list directly
and try to relax every edge in the graph

• This will be much closer to how the textbook presents Bellman-
Ford

• The run time will still be O(|V ||E|)
• To show correctness, we’ll have to show that are earlier in-

variant holds which can be proved by induction on i

27

Four phases of Bellman-Ford’s algorithm run on a directed

graph with negative edges.

Nodes are taken from the queue in the order

s � a b c � d f b � a e d � d a � �, where � is the token.

Shaded vertices are in the queue at the end of each phase.

The bold edges describe the evolving shortest path tree.

25

Analysis

• Since a shortest path can only pass through each vertex once,

either the algorithm halts before the |V |-th phase or the graph

contains a negative cycle

• In each phase, we scan each vertex at most once and so we

relax each edge at most once

• Hence the run time of a single phase is O(|E|)
• Thus, the overall run time of Bellman-Ford is O(|V ||E|)

26

Book Bellman-Ford

• Now that we understand how the phases of Bellman-Ford

work, we can simplify the algorithm

• Instead of using a queue to perform a partial BFS in each

phase, we will just scan through the adjacency list directly

and try to relax every edge in the graph

• This will be much closer to how the textbook presents Bellman-

Ford

• The run time will still be O(|V ||E|)
• To show correctness, we’ll have to show that are earlier in-

variant holds which can be proved by induction on i

27

Book Bellman-Ford

Book-BF(s){

InitSSSP(s);

repeat |V| times{

for every edge (u,v) in E{

if (u,v) is tense{

Relax(u,v);

}

}

}

for every edge (u,v) in E{

if (u,v) is tense, return ‘‘Negative Cycle’’

}

}

28

Take Away

• Dijkstra’s algorithm and Bellman-Ford are both variants of

the GenericSSSP algorithm for solving SSSP

• Dijkstra’s algorithm uses a Fibonacci heap for the bag while

Bellman-Ford uses a queue

• Dijkstra’s algorithm runs in time O(|E|+ |V | log |V |) if there

are no negative edges

• Bellman-Ford runs in time O(|V ||E|) and can handle negative

edges (and detect negative cycles)

29

All-Pairs Shortest Paths

• For the single-source shortest paths problem, we wanted to

find the shortest path from a source vertex s to all the other

vertices in the graph

• We will now generalize this problem further to that of finding

the shortest path from every possible source to every possible

destination

• In particular, for every pair of vertices u and v, we need to

compute the following information:

– dist(u, v) is the length of the shortest path (if any) from

u to v

– pred(u, v) is the second-to-last vertex (if any) on the short-

est path (if any) from u to v

30

Example

• For any vertex v, we have dist(v, v) = 0 and pred(v, v) =

NULL

• If the shortest path from u to v is only one edge long, then

dist(u, v) = w(u → v) and pred(u, v) = u

• If there’s no shortest path from u to v, then dist(u, v) = ∞
and pred(u, v) = NULL

31

APSP

• The output of our shortest path algorithm will be a pair of

|V | × |V | arrays encoding all |V |2 distances and predecessors.

• Many maps contain such a distance matric - to find the

distance from (say) Albuquerque to (say) Ruidoso, you look

in the row labeled “Albuquerque” and the column labeled

“Ruidoso”

• We’ll focus only on computing the distance array

• The predecessor array, from which you would compute the

actual shortest paths, can be computed with only minor ad-

ditions to the algorithms presented here

32

Lots of Single Sources

• Most obvious solution to APSP is to just run SSSP algorithm

|V | timnes, once for every possible source vertex

• Specifically, to fill in the subarray dist(s, ∗), we invoke either

Dijkstra’s or Bellman-Ford starting at the source vertex s

• We’ll call this algorithm ObviousAPSP

33

ObviousAPSP

ObviousAPSP(V,E,w){

for every vertex s{

dist(s,*) = SSSP(V,E,w,s);

}

}

34

Analysis

• The running time of this algorithm depends on which SSSP

algorithm we use

• If we use Bellman-Ford, the overall running time is O(|V |2|E|) =

O(|V |4)
• If all the edge weights are positive, we can use Dijkstra’s in-

stead, which decreases the run time to Θ(|V ||E|+|V |2 log |V |) =

O(|V |3)

35

Problem

• We’d like to have an algorithm which takes O(|V |3) but which

can also handle negative edge weights

• We’ll see that a dynamic programming algorithm, the Floyd

Warshall algorithm, will achieve this

• Note: the book discusses another algorithm, Johnson’s al-

gorithm, which is asymptotically better than Floyd Warshall

on sparse graphs. However we will not be discussing this

algorithm in class.

36

