Today’s Outline

“The path that can be trodden is not the enduring and unchanging Path. The name that can be named is not the enduring and unchanging Name.” - Tao Te Ching

- Bellman-Ford Wrapup
- All-Pairs Shortest Paths

InitSSSP

InitSSSP(s){
dist(s) = 0;
pred(s) = NULL;
for all vertices v != s{
dist(v) = infinity;
pred(v) = NULL;
}
}

GenericSSSP

GenericSSSP(s){
InitSSSP(s);
put s in the bag;
while the bag is not empty{
take u from the bag;
for all edges (u,v){
if (u,v) is tense{
Relax(u,v);
put v in the bag;
}
}
}
}
Bellman-Ford

- If we replace the bag in the GenericSSSP with a queue, we get the Bellman-Ford algorithm
- Bellman-Ford is efficient even if there are negative edges and it can be used to quickly detect the presence of negative cycles
- If there are no negative edges, however, Dijkstra's algorithm is faster than Bellman-Ford

Invariant

- A simple inductive argument (left as an exercise) shows the following invariant:
 - At the end of the i-th phase, for each vertex v, $\text{dist}(v)$ is less than or equal to the length of the shortest path $s \rightarrow v$ consisting of i or fewer edges
- This implies that the algorithm ends in $O(|V|)$ phases

Analysis

- The easiest way to analyze this algorithm is to break the execution into phases
- Before we begin the alg, we insert a token into the queue
- Whenever we take the token out of the queue, we begin a new phase by just reinserting the token into the queue
- The 0-th phase consists entirely of scanning the source vertex s
- The algorithm ends when the queue contains only the token

Example

Four phases of the Bellman-Ford algorithm run on a directed graph with negative edges.

Nodes are taken from the queue in the order $s \diamond a b c \diamond d f b \diamond a e d \diamond d a \diamond \diamond$, where \diamond is the token.
Shaded vertices are in the queue at the end of each phase.
The bold edges describe the evolving shortest path tree.
Analysis

- Since a shortest path can only pass through each vertex once, either the algorithm halts before the $|V|$-th phase or the graph contains a negative cycle.
- In each phase, we scan each vertex at most once and so we relax each edge at most once.
- Hence the run time of a single phase is $O(|E|)$.
- Thus, the overall run time of Bellman-Ford is $O(|V||E|)$.

Book Bellman-Ford

- Now that we understand how the phases of Bellman-Ford work, we can simplify the algorithm.
- Instead of using a queue to perform a partial BFS in each phase, we will just scan through the adjacency list directly and try to relax every edge in the graph.
- This will be much closer to how the textbook presents Bellman-Ford.
- The run time will still be $O(|V||E|)$.
- To show correctness, we’ll have to show that an earlier invariant holds which can be proved by induction on i.

Book Bellman-Ford

```plaintext
Book-BF(s){
  InitSSSP(s);
  repeat $|V|$ times{
    for every edge $(u,v)$ in $E${
      if $(u,v)$ is tense{
        Relax(u,v);
      }
    }
  }
  for every edge $(u,v)$ in $E${
    if $(u,v)$ is tense, return ‘‘Negative Cycle’’
  }
}
```

Take Away

- Dijkstra’s algorithm and Bellman-Ford are both variants of the GenericSSSP algorithm for solving SSSP.
- Dijkstra’s algorithm uses a Fibonacci heap for the bag while Bellman-Ford uses a queue.
- Dijkstra’s algorithm runs in time $O(|E| + |V| \log |V|)$ if there are no negative edges.
- Bellman-Ford runs in time $O(|V||E|)$ and can handle negative edges (and detect negative cycles).
All-Pairs Shortest Paths

- For the single-source shortest paths problem, we wanted to find the shortest path from a source vertex \(s \) to all the other vertices in the graph.
- We will now generalize this problem further to that of finding the shortest path from every possible source to every possible destination.
- In particular, for every pair of vertices \(u \) and \(v \), we need to compute the following information:
 - \(\text{dist}(u, v) \) is the length of the shortest path (if any) from \(u \) to \(v \).
 - \(\text{pred}(u, v) \) is the second-to-last vertex (if any) on the shortest path (if any) from \(u \) to \(v \).

Example

- For any vertex \(v \), we have \(\text{dist}(v, v) = 0 \) and \(\text{pred}(v, v) = \text{NULL} \).
- If the shortest path from \(u \) to \(v \) is only one edge long, then \(\text{dist}(u, v) = w(u \rightarrow v) \) and \(\text{pred}(u, v) = u \).
- If there’s no shortest path from \(u \) to \(v \), then \(\text{dist}(u, v) = \infty \) and \(\text{pred}(u, v) = \text{NULL} \).

APSP

- The output of our shortest path algorithm will be a pair of \(|V| \times |V|\) arrays encoding all \(|V|^2\) distances and predecessors.
- Many maps contain such a distance matrix - to find the distance from (say) Albuquerque to (say) Ruidoso, you look in the row labeled “Albuquerque” and the column labeled “Ruidoso”.
- In this class, we’ll focus only on computing the distance array.
- The predecessor array, from which you would compute the actual shortest paths, can be computed with only minor additions to the algorithms presented here.

Lots of Single Sources

- Most obvious solution to APSP is to just run SSSP algorithm \(|V|\) times, once for every possible source vertex.
- Specifically, to fill in the subarray \(\text{dist}(s, \ast) \), we invoke either Dijkstra’s or Bellman-Ford starting at the source vertex \(s \).
- We’ll call this algorithm ObviousAPSP.
Analysis

- The running time of this algorithm depends on which SSSP algorithm we use
 - If we use Bellman-Ford, the overall running time is $O(|V|^2|E|) = O(|V|^4)$
 - If all the edge weights are positive, we can use Dijkstra’s instead, which decreases the run time to $\Theta(|V||E| + |V|^2 \log |V|) = O(|V|^3)$

Problem

- We’d like to have an algorithm which takes $O(|V|^3)$ but which can also handle negative edge weights
- We’ll see that a dynamic programming algorithm, the Floyd Warshall algorithm, will achieve this
- Note: the book discusses another algorithm, Johnson’s algorithm, which is asymptotically better than Floyd Warshall on sparse graphs. However we will not be discussing this algorithm in class.

Dynamic Programming

- Recall: Dynamic Programming = Recursion + Memorization
- Thus we first need to come up with a recursive formulation of the problem
- We might recursively define $\text{dist}(u, v)$ as follows:

$$
\text{dist}(u, v) = \begin{cases}
0 & \text{if } u = v \\
\min_x \left(\text{dist}(u, x) + w(x \rightarrow v) \right) & \text{otherwise}
\end{cases}
$$

```plaintext
ObviousAPSP(V,E,w){
    for every vertex s{
        dist(s,*) = SSSP(V,E,w,s);
    }
}
```

```plaintext
Dynamic Programming

- Recall: Dynamic Programming = Recursion + Memorization
- Thus we first need to come up with a recursive formulation of the problem
- We might recursively define $\text{dist}(u, v)$ as follows:

$$
\text{dist}(u, v) = \begin{cases} 
0 & \text{if } u = v \\
\min_x \left( \text{dist}(u, x) + w(x \rightarrow v) \right) & \text{otherwise}
\end{cases}
$$

```
The problem

- In other words, to find the shortest path from u to v, try all possible predecessors x, compute the shortest path from u to x and then add the last edge $u \rightarrow v$
- **Unfortunately, this recurrence doesn't work**
- To compute $dist(u, v)$, we first must compute $dist(u, x)$ for every other vertex x, but to compute any $dist(u, x)$, we first need to compute $dist(u, v)$
- We're stuck in an infinite loop!

The solution

- To avoid this circular dependency, we need some additional parameter that decreases at each recursion and eventually reaches zero at the base case
- One possibility is to include the number of edges in the shortest path as this third magic parameter
- So define $dist(u, v, k)$ to be the length of the shortest path from u to v that uses at most k edges
- Since we know that the shortest path between any two vertices uses at most $|V| - 1$ edges, what we want to compute is $dist(u, v, |V| - 1)$

The Recurrence

$$dist(u, v, k) = \begin{cases}
0, & \text{if } u = v \\
\infty, & \text{if } k = 0 \text{ and } u \neq v \\
\min_x \left(dist(u, x, k - 1) + w(x \rightarrow v) \right), & \text{otherwise}
\end{cases}$$

The Algorithm

- It's not hard to turn this recurrence into a dynamic programming algorithm
- Even before we write down the algorithm, though, we can tell that its running time will be $\Theta(|V|^4)$
- This is just because the recurrence has four variables — u, v, k and x — each of which can take on $|V|$ different values
- Except for the base cases, the algorithm will just be four nested “for” loops
The Problem

- This algorithm still takes $O(|V|^4)$ which is no better than the ObviousAPSP algorithm
- If we use a certain divide and conquer technique, there is a way to get this down to $O(|V|^3 \log |V|)$ (think about how you might do this)
- However, to get down to $O(|V|^3)$ run time, we need to use a different third parameter in the recurrence

Floyd-Warshall

- Number the vertices arbitrarily from 1 to $|V|
- Define $dist(u, v, r)$ to be the shortest path from u to v where all intermediate vertices (if any) are numbered r or less
- If $r = 0$, we can’t use any intermediate vertices so shortest path from u to v is just the weight of the edge (if any) between u and $v
- If $r > 0$, then either the shortest legal path from u to v goes through vertex r or it doesn’t
- We need to compute the shortest path distance from u to v with no restrictions, which is just $dist(u, v, |V|)$

We get the following recurrence:

$$
dist(u, v, r) = \begin{cases}
 w(u \rightarrow v) & \text{if } r = 0 \\
 \min \{ dist(u, v, r-1),
 \min \{ dist(u, r, r-1) + dist(r, v, r-1) \} & \text{otherwise}
\end{cases}
$$
The Algorithm

FloydWarshall(V,E,w)
 for u=1 to |V|{
 for v=1 to |V|{
 dist(u,v,0) = w(u,v);
 }
 }
 for r=1 to |V|{
 for u=1 to |V|{
 for v=1 to |V|{
 if (dist(u,v,r-1) < dist(u,r,r-1) + dist(r,v,r-1))
 dist(u,v,r) = dist(u,v,r-1);
 else
 dist(u,v,r) = dist(u,r,r-1) + dist(r,v,r-1);
 }
 }
 }

Analysis

• There are three variables here, each of which takes on |V| possible values
• Thus the run time is \(\Theta(|V|^3) \)
• Space required is also \(\Theta(|V|^3) \)

Take Away

• Floyd-Warshall solves the APSP problem in \(\Theta(|V|^3) \) time even with negative edge weights
• Floyd-Warshall uses dynamic programming to compute APSP
• We've seen that sometimes for a dynamic program, we need to introduce an extra variable to break dependencies in the recurrence.
• We've also seen that the choice of this extra variable can have a big impact on the run time of the dynamic program