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Today’s Outline

• Intro to P,NP, and NP-Hardness
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Efficient Algorithms

• Q: What is a minimum requirement for an algorithm to be

efficient?

• A: A long time ago, theoretical computer scientists decided

that a minimum requirement of any efficient algorithm is that

it runs in polynomial time: O(nc) for some constant c

• People soon recognized that not all problems can be solved

in polynomial time but they had a hard time figuring out

exactly which ones could and which ones couldn’t
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NP-Hard Problems

• Q: How to determine those problems which can be solved in

polynomial time and those which can not

• Again a long time ago, Steve Cook and Dick Karp and others

defined the class of NP-hard problems

• Most people believe that NP-Hard problems cannot be solved

in polynomial time, even though so far nobody has proven a

super-polynomial lower bound.

• What we do know is that if any NP-Hard problem can be

solved in polynomial time, they all can be solved in polyno-

mial time.
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Circuit Satisfiability

• Circuit satisfiability is a good example of a problem that

we don’t know how to solve in polynomial time

• In this problem, the input is a boolean circuit: a collection

of and, or, and not gates connected by wires

• We’ll assume there are no loops in the circuit (so no delay

lines or flip-flops)
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Circuit Satisfiability

• The input to the circuit is a set of m boolean (true/false)

values x1, . . . xm

• The output of the circuit is a single boolean value

• Given specific input values, we can calculate the output in

polynomial time using depth-first search and evaluating the

output of each gate in constant time
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Circuit Satisfiability

• The circuit satisfiability problem asks, given a circuit, whether

there is an input that makes the circuit output True

• In other words, does the circuit always output false for any

collenction of inputs

• Nobody knows how to solve this problem faster than just

trying all 2m possible inputs to the circuit but this requires

exponential time

• On the other hand nobody has every proven that this is the

best we can do!
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Example

Circuit Satisfiability

• Circuit satisfiability is a good example of a problem that

we don’t know how to solve in polynomial time

• In this problem, the input is a boolean circuit: a collection

of and, or, and not gates connected by wires

• We’ll assume there are no loops in the circuit (so no delay

lines or flip-flops)

4

Circuit Satisfiability

• The input to the circuit is a set of m boolean (true/false)

values x1, . . . xm

• The output of the circuit is a single boolean value

• Given specific input values, we can calculate the output in

polynomial time using depth-first search and evaluating the

output of each gate in constant time

5

Circuit Satisfiability

• The circuit satisfiability problem asks, given a circuit, whether

there is an input that makes the circuit output True

• In other words, does the circuit always output false for any

collenction of inputs

• Nobody knows how to solve this problem faster than just

trying all 2m possible inputs to the circuit but this requires

exponential time

• On the other hand nobody has every proven that this is the

best we can do!

6

Example

x
y x   y∨x

yx   y∧ x x

An and gate, an or gate, and a not gate.

x1

x2
x3
x4
x5

A boolean circuit. Inputs enter from the left, and the output

leaves to the right.
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Classes of Problems

We can characterize many problems into three classes:

• P is the set of yes/no problems that can be solved in poly-

nomial time. Intuitively P is the set of problems that can be

solved “quickly”

• NP is the set of yes/no problems with the following property:

If the answer is yes, then there is a proof of this fact that

can be checked in polynomial time

• co-NP is the set of yes/no problems with the following prop-

erty: If the answer is no, then there is a proof of this fact

that can be checked in polynomial time
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NP

• NP is the set of yes/no problems with the following property:

If the answer is yes, then there is a proof of this fact that

can be checked in polynomial time

• Intuitively NP is the set of problems where we can verify a

Yes answer quickly if we have a solution in front of us

• For example, circuit satisfiability is in NP since if the answer

is yes, then any set of m input values that produces the True

output is a proof of this fact (and we can check this proof

in polynomial time)
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P,NP, and co-NP

• If a problem is in P, then it is also in NP — to verify that

the answer is yes in polynomial time, we can just throw away

the proof and recompute the answer from scratch

• Similarly, any problem in P is also in co-NP

• In this sense, problems in P can only be easier than problems

in NP and co-NP
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Examples

• The problem: “For a certain circuit and a set of inputs, is

the output True?” is in P (and in NP and co-NP)

• The problem: “Does a certain circuit have an input that

makes the output True?” is in NP

• The problem: “Does a certain circuit always have output

true for any input?” is in co-NP
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P Examples

Most problems we’ve seen in this class so far are in P including:

• “Does there exist a path of distance ≤ d from u to v in the

graph G?”

• “Does there exist a minimum spanning tree for a graph G

that has cost ≤ c?”

• “Does there exist an alignment of strings s1 and s2 which

has cost ≤ c?”
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NP Examples

There are also several problems that are in NP (but probably not

in P) including:

• Circuit Satisfiability

• Coloring: “Can we color the vertices of a graph G with c

colors such that every edge has two different colors at its

endpoints (G and c are inputs to the problem)

• Clique: “Is there a clique of size k in a graph G?” (G and k

are inputs to the problem)

• Hamiltonian Path: “Does there exist a path for a graph G

that visits every vertex exactly once?”
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The $1 Million Question

• The most important question in computer science (and one

of the most important in mathematics) is: “Does P=NP?”

• Nobody knows.

• Intuitively, it seems obvious that P6=NP; in this class you’ve

seen that some problems can be very difficult to solve, even

though the solutions are obvious once you see them

• But nobody has proven that P6=NP
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NP and co-NP

• Notice that the definition of NP (and co-NP) is not symmet-

ric.

• Just because we can verify every yes answer quickly doesn’t

mean that we can check no answers quickly

• For example, as far as we know, there is no short proof that

a boolean circuit is not satisfiable

• In other words, we know that Circuit Satisfiability is in NP

but we don’t know if its in co-NP
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Conjectures

• We conjecture that P6=NP and that NP6=co-NP

• Here’s a picture of what we think the world looks like:

Conjectures

• We conjecture that P!=NP and that NP!=co-NP

• Here’s a picture of what we think the world looks like:

P

NPco−NP
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NP-Hard

• A problem Π is NP-hard if a polynomial-time algorithm for

Π would imply a polynomial-time algorithm for every problem

in NP

• In other words: Π is NP-hard iff If Π can be solved in

polynomial time, then P=NP

• In other words: if we can solve one particular NP-hard prob-

lem quickly, then we can quickly solve any problem whose

solution is quick to check (using the solution to that one

special problem as a subroutine)

• If you tell your boss that a problem is NP-hard, it’s like saying:

“Not only can’t I find an efficient solution to this problem

but neither can all these other very famous people.” (you

could then seek to find an approximation algorithm for your

problem)
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NP-Complete

• A problem is NP-Easy if it is in NP

• A problem is NP-Complete if it is NP-Hard and NP-Easy

• In other words, a problem is NP-Complete if it is in NP but

is at least as hard as all other problems in NP.

• If anyone finds a polynomial-time algorithm for even one NP-

complete problem, then that would imply a polynomial-time

algorithm for every NP-Complete problem

• Thousands of problems have been shown to be NP-Complete,

so a polynomial-time algorithm for one (i.e. all) of them is

incredibly unlikely
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Example

P

co−NP

NP−hard

NP
NP−complete

A more detailed picture of what we think the world looks like.
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Proving NP-Hardness

• In 1971, Steve Cook proved the following theorem: Circuit

Satisfiability is NP-Hard

• Thus, one way to show that a problem A is NP-Hard is to

show that if you can solve it in polynomial time, then you can

solve the Circuit Satisfiability problem in polynomial time.

• This is called a reduction. We say that we reduce Circuit

Satisfiability to problem A

• This implies that problem A is “as difficult as” Circuit Sat-

isfiability.
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SAT

• Consider the formula satisfiability problem (aka SAT)

• The input to SAT is a boolean formula like

(a ∨ b ∨ c ∨ d̄)⇔ ((b ∧ c̄) ∨ (ā⇒ d) ∨ (c 6= a ∧ b)),

• The question is whether it is possible to assign boolean values

to the variables a, b, c, . . . so that the formula evaluates to

TRUE

• To show that SAT is NP-Hard, we need to show that we can

use a solution to SAT to solve Circuit Satisfiability
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The Reduction

• Given a boolean circuit, we can transform it into a boolean

formula by creating new output variables for each gate and

then just writing down the list of gates separated by AND

• This simple algorithm is the reduction

• For example, we can transform the example ciruit into a

formula as follows:
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Example

x1

x2
x3
x4
x5

y1

y2
y3

y4

y5

y6

y7
y8

(y1 = x1∧x4)∧ (y2 = x4)∧ (y3 = x3∧ y2)∧ (y4 = y1∨x2)∧

(y5 = x2)∧(y6 = x5)∧(y7 = y3∨y5)∧(y8 = y4∧y7∧y6)∧y8

A boolean circuit with gate variables added, and an equivalent

boolean formula.
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(y1 = x1∧x4)∧ (y2 = x4)∧ (y3 = x3∧ y2)∧ (y4 = y1∨x2)∧
(y5 = x2)∧(y6 = x5)∧(y7 = y3∨y5)∧(y8 = y4∧y7∧y6)∧y8

A boolean circuit with gate variables added, and an equivalent

boolean formula.
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Reduction Picture

boolean circuit
O(n)
−−−→ boolean formulawww� SAT

True or False
trivial
←−−− True or False
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Reduction

• The original circuit is satisifiable iff the resulting formula is

satisfiable

• We can transform any boolean circuit into a formula in linear

time using DFS and the size of the resulting formula is only

a constant factor larger than the size of the circuit

• Thus we’ve shown that if we had a polynomial-time algorithm

for SAT, then we’d have a polynomial-time algorithm for

Circuit Satisfiability (and this would imply that P=NP)

• This means that SAT is NP-Hard
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Showing NP-Completeness

• We’ve shown that SAT is NP-Hard, to show that it is NP-

Complete, we now must also show that it is in NP

• In other words, we must show that if the given formula is

satisfiable, then there is a proof of this fact that can be

checked in polynomial time

• To prove that a boolean formula is satisfiable, we only have

to specify an assignment to the variables that makes the

formula true (this is the “proof” that the formula is true)

• Given this assignment, we can check it in linear time just by

reading the formula from left to right, evaluating as we go

• So we’ve shown that SAT is NP-Hard and that SAT is in NP,

thus SAT is NP-Complete
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Take Away

• In general to show a problem is NP-Complete, we first show

that it is in NP and then show that it is NP-Hard

• To show that a problem is in NP, we just show that when

the problem has a “yes” answer, there is a proof of this fact

that can be checked in polynomial time (this is usually easy)

• To show that a problem is NP-Hard, we show that if we

could solve it in polynomial time, then we could solve some

other NP-Hard problem in polynomial time (this is called a

reduction)
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3-SAT

• A boolean formula is in conjunctive normal form (CNF) if it

is a conjunction (and) of several clauses, each of which is

the disjunction (or) or several literals, each of which is either

a variable or its negation. For example:

clause︷ ︸︸ ︷
(a ∨ b ∨ c ∨ d) ∧ (b ∨ c̄ ∨ d̄) ∧ (ā ∨ c ∨ d) ∧ (a ∨ b̄)

• A 3CNF formula is a CNF formula with exactly three literals

per clause

• The 3-SAT problem is just: “Is there any assignment of

variables to a 3CNF formula that makes the formula evaluate

to true?”
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3-SAT

• 3-SAT is just a restricted version of SAT

• Surprisingly, 3-SAT also turns out to be NP-Complete (proof

omitted for now)

• 3-SAT is very useful in proving NP-Hardness results for other

problems, we’ll see how it can be used to show that CLIQUE

is NP-Hard
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CLIQUE

• The last problem we’ll consider in this lecture is CLIQUE

• The problem CLIQUE asks “Is there a clique of size k in a

graph G?”

• Example graph with clique of size 4:
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CLIQUE

• The last problem we’ll consider in this lecture is CLIQUE

• The problem CLIQUE asks “Is there a clique of size k in a

graph G?”

• Example graph with clique of size 4:

• We’ll show that Clique is NP-Hard using a reduction from

3-SAT. (the proof that Clique is in NP is left as an exercise)
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The Reduction

• Given a 3-CNF formula F , we construct a graph G as follows.

• The graph has one node for each instance of each literal in

the formula

• Two nodes are connected by an edge is: (1) they correspond

to literals in different clauses and (2) those literals do not

contradict each other
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Reduction Example

• Let F be the formula: (a∨b∨c)∧(b∨ c̄∨d̄)∧(ā∨c∨d)∧(a∨ b̄∨d̄)

• This formula is transformed into the following graph:
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• Let F be the formula: (a∨b∨c)∧(b∨ c̄∨d̄)∧(ā∨c∨d)∧(a∨ b̄∨d̄)

• This formula is transformed into the following graph:

a b c

a

b

d

b

c

d

a dc

(look for the edges that aren’t in the graph)
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Reduction

• Let F have k clauses. Then G has a clique of size k iff F has

a satisfying assignment. The proof:

• k-clique =⇒ satisfying assignment: If the graph has

a clique of k vertices, then each vertex must come from a

different clause. To get the satisfying assignment, we declare

that each literal in the clique is true. Since we only connect

non-contradictory literals with edges, this declaration assigns

a consistent value to several of the variables. There may be

variables that have no literal in the clique; we can set these

to any value we like.

• satisfying assignment =⇒ k-clique: If we have a satisfy-

ing assignment, then we can choose one literal in each clause

that is true. Those literals form a k-clique in the graph.
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Reduction Picture

3CNF formula with k clauses
O(n)
−−−→ graph with 3k nodes

!
!
!
" Clique of size k?

True or False
trivial
←−−− True or False
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In-Class Exercise

Consider the formula: (a ∨ b) ∧ (b ∨ c̄) ∧ (c ∨ b̄)

• Q1: Transform this formula into a graph, G, using the re-

duction just given.

• Q2: What is the maximum clique size in G? Give the vertices

in this maximum clique.
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(look for the edges that aren’t in the graph)
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