
CS 362, Lecture 24

Jared Saia

University of New Mexico

Today’s Outline

• Reduction Wrapup

• Approximation algorithms for NP-Hard Problems

1

Hamiltonian Cycle

• A Hamiltonian Cycle in a graph is a cycle that visits every

vertex exactly once (note that this is very different from an

Eulerian cycle which visits every edge exactly once)

• The Hamiltonian Cycle problem is to determine if a given

graph G has a Hamiltonian Cycle

• We will show that this problem is NP-Hard by a reduction

from the vertex cover problem.

2

The Reduction

• To do the reduction, we need to show that we can solve

Vertex Cover in polynomial time if we have a polynomial

time solution to Hamiltonian Cycle.

• Given a graph G and an integer k, we will create another

graph G′ such that G′ has a Hamiltonian cycle iff G has a

vertex cover of size k

• As for the last reduction, our transformation will consist of

putting together several “gadgets”

3

Edge Gadget and Cover Vertices

• For each edge (u, v) in G, we have an edge gadget in G′

consisting of twelve vertices and fourteen edges, as shown

below

The Reduction

• To do the reduction, we need to show that we can solve
Vertex Cover in polynomial time if we have a polynomial
time solution to Hamiltonian Cycle.

• Given a graph G and an integer k, we will create another
graph G′ such that G′ has a Hamiltonian cycle iff G has a
vertex cover of size k

• As for the last reduction, our transformation will consist of
putting together several “gadgets”

24

Edge Gadget and Cover Vertices

• For each edge (u, v) in G, we have an edge gadget in G′
consisting of twelve vertices and fourteen edges, as shown
below

(u,v,1) (u,v,6)(u,v,2) (u,v,3) (u,v,4) (u,v,5)

(v,u,1) (v,u,2) (v,u,3) (v,u,4) (v,u,5) (v,u,6)

An edge gadget for (u, v) and the only possible Hamiltonian paths
through it.

25

Edge Gadget

• The four corner vertices (u, v,1), (u, v,6), (v, u,1), and (v, u,6)
each have an edge leaving the gadget

• A Hamiltonian cycle can only pass through an edge gadget
in one of the three ways shown in the figure

• These paths through the edge gadget will correspond to one
or both of the vertices u and v being in the vertex cover.

26

Cover Vertices

• G′ also contains k cover vertices, simply numbered 1 through
k

27

The Reduction

• To do the reduction, we need to show that we can solve
Vertex Cover in polynomial time if we have a polynomial
time solution to Hamiltonian Cycle.

• Given a graph G and an integer k, we will create another
graph G′ such that G′ has a Hamiltonian cycle iff G has a
vertex cover of size k

• As for the last reduction, our transformation will consist of
putting together several “gadgets”

24

Edge Gadget and Cover Vertices

• For each edge (u, v) in G, we have an edge gadget in G′
consisting of twelve vertices and fourteen edges, as shown
below

(u,v,1) (u,v,6)(u,v,2) (u,v,3) (u,v,4) (u,v,5)

(v,u,1) (v,u,2) (v,u,3) (v,u,4) (v,u,5) (v,u,6)

An edge gadget for (u, v) and the only possible Hamiltonian paths
through it.

25

Edge Gadget

• The four corner vertices (u, v,1), (u, v,6), (v, u,1), and (v, u,6)
each have an edge leaving the gadget

• A Hamiltonian cycle can only pass through an edge gadget
in one of the three ways shown in the figure

• These paths through the edge gadget will correspond to one
or both of the vertices u and v being in the vertex cover.

26

Cover Vertices

• G′ also contains k cover vertices, simply numbered 1 through
k

27

An edge gadget for (u, v) and the only possible Hamiltonian paths

through it.

4

Edge Gadget

• The four corner vertices (u, v,1), (u, v,6), (v, u,1), and (v, u,6)

each have an edge leaving the gadget

• A Hamiltonian cycle can only pass through an edge gadget

in one of the three ways shown in the figure

• These paths through the edge gadget will correspond to one

or both of the vertices u and v being in the vertex cover.

5

Cover Vertices

• G′ also contains k cover vertices, simply numbered 1 through

k

6

Vertex Chains

• For each vertex u in G, we string together all the edge gad-

gets for edges (u, v) into a single vertex chain and then con-

nect the ends of the chain to all the cover vertices

• Specifically, suppose u has d neighbors v1, v2, . . . , vd. Then G′

has the following edges:

– d − 1 edges between (u, vi,6) and (u, vi+1,1) (for all i

between 1 and d− 1)

– k edges between the cover vertices and (u, v1,1)

– k edges between the cover vertices and (u, vd,6)

7

The Reduction

• It’s not hard to prove that if {v1, v2, . . . , vk} is a vertex cover

of G, then G′ has a Hamiltonian cycle

• To get this Hamiltonian cycle, we start at cover vertex 1,

traverse through the vertex chain for v1, then visit cover

vertex 2, then traverse the vertex chain for v2 and so forth,

until we eventually return to cover vertex 1

• Conversely, one can prove that any Hamiltonian cycle in G′

alternates between cover vertices and vertex chains, and that

the vertex chains correspond to the k vertices in a vertex

cover of G

Thus, G has a vertex cover of size k iff G′ has a Hamiltonian

cycle

8

The Reduction

• The transformation from G to G′ takes at most O(|V |2) time,

so the Hamiltonian cycle problem is NP-Hard

• Moreover we can easily verify a Hamiltonian cycle in linear

time, thus Hamiltonian cycle is also in NP

• Thus Hamiltonian Cycle is NP-Complete

9

Example

Vertex Chains

• For each vertex u in G, we string together all the edge gad-
gets for edges (u, v) into a single vertex chain and then con-
nect the ends of the chain to all the cover vertices

• Specifically, suppose u has d neighbors v1, v2, . . . , vd. Then G′
has the following edges:
– d − 1 edges between (u, vi,6) and (u, vi+1,1) (for all i

between 1 and d − 1)
– k edges between the cover vertices and (u, v1,1)
– k edges between the cover vertices and (u, vd,6)

28

The Reduction

• It’s not hard to prove that if {v1, v2, . . . , vk} is a vertex cover
of G, then G′ has a Hamiltonian cycle

• To get this Hamiltonian cycle, we start at cover vertex 1,
traverse through the vertex chain for v1, then visit cover
vertex 2, then traverse the vertex chain for v2 and so forth,
until we eventually return to cover vertex 1

• Conversely, one can prove that any Hamiltonian cycle in G′
alternates between cover vertices and vertex chains, and that
the vertex chains correspond to the k vertices in a vertex
cover of G

Thus, G has a vertex cover of size k iff G′ has a Hamiltonian
cycle

29

The Reduction

• The transformation from G to G′ takes at most O(|V |2) time,
so the Hamiltonian cycle problem is NP-Hard

• Moreover we can easily verify a Hamiltonian cycle in linear
time, thus Hamiltonian cycle is also in NP

• Thus Hamiltonian Cycle is NP-Complete

30

Example

1

2

u v

w x

(v,x)

(x,v)

(u,v)

(v,u)

(u,w)

(w,u)

(v,w)

(w,v)

(x,w)

(w,x)

The original graph G with vertex cover {v, w}, and the transformed graph G′
with a corresponding Hamiltonian cycle (bold edges).

Vertex chains are colored to match their corresponding vertices.

31

The original graph G with vertex cover {v, w}, and the transformed graph G′

with a corresponding Hamiltonian cycle (bold edges).
Vertex chains are colored to match their corresponding vertices.

10

The Reduction

graph G = (V, E), k
O(|V |2)
−−−→ graph G′www� Hamiltonian Cycle

True or False
O(1)
←−−− True or False

11

Traveling Sales Person

• A problem closely related to Hamiltonian cycle is the famous

Traveling Salesperson Problem(TSP)

• The TSP problem is: “Given a weighted graph G, find the

shortest cycle that visits every vertex.

• Finding the shortest cycle is obviously harder than deter-

mining if a cycle exists at all, so since Hamiltonian Cycle is

NP-hard, TSP is also NP-hard!

12

NP-Hard Games

• In 1999, Richard Kaye proved that the solitaire game Minesweeper

is NP-Hard, using a reduction from Circuit Satifiability.

• Also in the last few years, Eric Demaine, et. al., proved that

the game Tetris is NP-Hard

13

Challenge Problem

• Consider the optimization version of, say, the graph coloring

problem: “Given a graph G, what is the smallest number

of colors needed to color the graph?” (Note that unlike the

decision version of this problem, this is not a yes/no question)

• Show that the optimization version of graph coloring is also

NP-Hard by a reduction from the decision version of graph

coloring.

• Is the optimization version of graph coloring also NP-Complete?

14

Challenge Problem

• Consider the problem 4Sat which is: “Is there any assign-

ment of variables to a 4CNF formula that makes the formula

evaluate to true?”

• Is this problem NP-Hard? If so, give a reduction from 3Sat

that shows this. If not, give a polynomial time algorithm

which solves it.

15

Challenge Problem

• Consider the following problem: “Does there exist a clique

of size 5 in some input graph G?”

• Is this problem NP-Hard? If so, prove it by giving a reduction

from some known NP-Hard problem. If not, give a polynomial

time algorithm which solves it.

16

Vertex Cover

• A vertex cover of a graph is a set of vertices that touches

every edge in the graph

• The decision version of Vertex Cover is: “Does there exist

a vertex cover of size k in a graph G?”.

• We’ve proven this problem is NP-Hard by an easy reduction

from Independent Set

• The optimization version of Vertex Cover is: “What is the

minimum size vertex cover of a graph G?”

• We can prove this problem is NP-Hard by a reduction from

the decision version of Vertex Cover (left as an exercise).

17

Approximating Vertex Cover

• Even though the optimization version of Vertex Cover is NP-

Hard, it’s possible to approximate the answer efficiently

• In particular, in polynomial time, we can find a vertex cover

which is no more than 2 times as large as the minimal vertex

cover

18

Approximation Algorithm

• The approximation algorithm does the following until G has

no more edges:

• It chooses an arbitrary edge (u, v) in G and includes both u

and v in the cover

• It then removes from G all edges which are incident to either

u or v

19

Approximation Algorithm

Approx-Vertex-Cover(G){

C = {};

E’ = Edges of G;

while(E’ is not empty){

let (u,v) be an arbitrary edge in E’;

add both u and v to C;

remove from E’ every edge incident to u or v;

}

return C;

}

20

Analysis

• If we implement the graph with adjacency lists, each edge

need be touched at most once

• Hence the run time of the algorithm will be O(|V | + |E|),
which is polynomial time

• First, note that this algorithm does in fact return a vertex

cover since it ensures that every edge in G is incident to some

vertex in C

• Q: Is the vertex cover actually no more than twice the optimal

size?

21

Analysis

• Let A be the set of edges which are chosen in the first line

of the while loop

• Note that no two edges of A share an endpoint

• Thus, any vertex cover must contain at least one endpoint

of each edge in A

• Thus if C∗ is an optimal cover then we can say that |C∗| ≥ |A|
• Further, we know that |C| = 2|A|
• This implies that |C| ≤ 2|C ∗ |

Which means that the vertex cover found by the algorithm is no

more than twice the size of an optimal vertex cover.

22

TSP

• An optimization version of the TSP problem is: “Given a

weighted graph G, what is the shortest Hamiltonian Cycle of

G?”

• This problem is NP-Hard by a reduction from Hamiltonian

Cycle

• However, there is a 2-approximation algorithm for this prob-

lem if the edge weights obey the triangle inequality

23

Triangle Inequality

• In many practical problems, it’s reasonable to make the as-

sumption that the weights, c, of the edges obey the triangle

inequality

• The triangle inequality says that for all vertices u, v, w ∈ V :

c(u, w) ≤ c(u, v) + c(v, w)

• In other words, the cheapest way to get from u to w is always

to just take the edge (u, w)

• In the real world, this is usually a pretty natural assumption.

For example it holds if the vertices are points in a plane

and the cost of traveling between two vertices is just the

euclidean distance between them.

24

Approximation Algorithm

• Given a weighted graph G, the algorithm first computes a

MST for G, T , and then arbitrarily selects a root node r of

T .

• It then lets L be the list of the vertices visited in a depth

first traversal of T starting at r.

• Finally, it returns the Hamiltonian Cycle, H, that visits the

vertices in the order L.

25

Approximation Algorithm

Approx-TSP(G){

T = MST(G);

L = the list of vertices visited in a depth first traversal

of T, starting at some arbitrary node in T;

H = the Hamiltonian Cycle that visits the vertices in the

order L;

return H;

}

26

Example Run

Triangle Inequality

• In many practical problems, it’s reasonable to make the as-

sumption that the weights, c, of the edges obey the triangle

inequality

• The triangle inequality says that for all vertices u, v, w ∈ V :

c(u, w) ≤ c(u, v) + c(v, w)

• In other words, the cheapest way to get from u to w is always

to just take the edge (u, w)

• In the real world, this is usually a pretty natural assumption.

For example it holds if the vertices are points in a plane

and the cost of traveling between two vertices is just the

euclidean distance between them.

24

Approximation Algorithm

• Given a weighted graph G, the algorithm first computes a

MST for G, T , and then arbitrarily selects a root node r of

T .

• It then lets L be the list of the vertices visited in a depth

first traversal of T starting at r.

• Finally, it returns the Hamiltonian Cycle, H, that visits the

vertices in the order L.

25

Approximation Algorithm

Approx-TSP(G){

T = MST(G);

L = the list of vertices visited in a depth first traversal

of T, starting at some arbitrary node in T;

H = the Hamiltonian Cycle that visits the vertices in the

order L;

return H;

}

26

Example Run

a d

b f

c
h

e
g

a d

b f

c
h

e
g

a d

b f

c
h

e
g

a d

b f

c
h

e
g

The top left figure shows the graph G (edge weights are just

the Euclidean distances between vertices); the top right figure

shows the MST T . The bottom left figure shows the depth

first walk on T , W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a); the bottom

right figure shows the Hamiltonian cycle H obtained by deleting

repeat visits from W , H = (a, b, c, h, d, e, f, g).

27

The top left figure shows the graph G (edge weights are just

the Euclidean distances between vertices); the top right figure

shows the MST T . The bottom left figure shows the depth

first walk on T , W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a); the bottom

right figure shows the Hamiltonian cycle H obtained by deleting

repeat visits from W , H = (a, b, c, h, d, e, f, g).

27

Analysis

• The first step of the algorithm takes O(|E|+ |V | log |V |) (if

we use Prim’s algorithm)

• The second step is O(|V |)
• The third step is O(|V |).
• Hence the run time of the entire algorithm is polynomial

28

Analysis

An important fact about this algorithm is that: the cost of the

MST is less than the cost of the shortest Hamiltonian cycle.

• To see this, let T be the MST and let H∗ be the shortest

Hamiltonian cycle.

• Note that if we remove one edge from H∗, we have a span-

ning tree, T ′

• Finally, note that w(H∗) ≥ w(T ′) ≥ w(T)

• Hence w(H∗) ≥ w(T)

29

Analysis

• Now let W be a depth first walk of T which traverses each

edge exactly twice (similar to what you did in the hw)

• In our example, W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

• Note that c(W) = 2c(T)

• This implies that c(W) ≤ 2c(H∗)

30

Analysis

• Unfortunately, W is not a Hamiltonian cycle since it visits

some vertices more than once

• However, we can delete a visit to any vertex and the cost will

not increase because of the triangle inequality. (The path

without an intermediate vertex can only be shorter)

• By repeatedly applying this operation, we can remove from

W all but the first visit to each vertex, without increasing

the cost of W .

• In our example, this will give us the ordering H = (a, b, c, h, d, e, f, g)

31

Analysis

• By the last slide, c(H) ≤ c(W).

• So c(H) ≤ c(W) = 2c(T) ≤ 2c(H∗)
• Thus, c(H) ≤ 2c(H∗)
• In other words, the Hamiltonian cycle found by the algorithm

has cost no more than twice the shortest Hamiltonian cycle.

32

Take Away

• Many real-world problems can be shown to not have an effi-

cient solution unless P = NP (these are the NP-Hard prob-

lems)

• However, if a problem is shown to be NP-Hard, all hope is

not lost!

• In many cases, we can come up with an provably good ap-

proximation algorithm for the NP-Hard problem.

33

